Answer:
1.88 × 10²² Molecules of CO
Explanation:
At STP for an ideal gas,
Volume = Mole × 22.4 L/mol
Or,
Mole = Volume / 22.4 L/mol
Mole = 0.7 L / 22.4 L/mol
Mole = 0.03125 moles
Now,
No. of Molecules = Moles × 6.022 × 10²³ Molecules/mol
No. of Molecules = 0.03125 × 6.022 × 10²³ Molecules/mol
No. of Molecules = 1.88 × 10²² Molecules of CO
Answer:
Yes.
Explanation:
Yes, this difference of readings will definitely affect the results of the experiment as well as the E values because the readings taken by both students are different from one another. There is a fault in one of the thermometer because both shows different readings of temperature of the same solution. This will affect the overall experiment and due to this error, we are unable to tell that which one reading is correct so the answer is uncertain or unsure.
Answer:
can only be determined experimentally.
Explanation:
In the early days of inorganic chemistry, the structure of complex ions remained a mystery hence the name ''complex''.
These ions appear to have structures that defied accurate elucidation. However, by diligent laboratory investigation, Alfred Werner was able to accurately determine the structure of cobalt complexes. As a result of this, he is regarded as a pathfinder in coordination chemistry.
Hence, the structure of complex ions can only be determined experimentally.
Fossil Fuels give off energy when they are burned
One valuable fossil fuel is natural gas. It is a cleaner-burning fuel source.
Explanation:
Rats and mice are both rodents, so look similar - the biggest difference is their size. Rats are larger and heavier while mice have smaller slender bodies. Mice also have long slender tails (for their body size) covered in hair compared to rat tails which are shorter, thicker and hairless