The power expended is 500 W
Explanation:
First of all, we start by calculating the work done by the man in order to ascend: this is equal to the gravitational potential energy gained by the man, which is

where
m = 50 kg is the mass of the man
is the acceleration of gravity
is the change in height
Substituting,

Now we can calculate the power expended, which is given by

where
W = 2500 J is the work done
t = 5 s is the time elapsed
Substituting, we find

Learn more about power:
brainly.com/question/7956557
#LearnwithBrainly
Answer:
a) a = 3.72 m / s², b) a = -18.75 m / s²
Explanation:
a) Let's use kinematics to find the acceleration before the collision
v = v₀ + at
as part of rest the v₀ = 0
a = v / t
Let's reduce the magnitudes to the SI system
v = 115 km / h (1000 m / 1km) (1h / 3600s)
v = 31.94 m / s
v₂ = 60 km / h = 16.66 m / s
l
et's calculate
a = 31.94 / 8.58
a = 3.72 m / s²
b) For the operational average during the collision let's use the relationship between momentum and momentum
I = Δp
F Δt = m v_f - m v₀
F =
F = m [16.66 - 31.94] / 0.815
F = m (-18.75)
Having the force let's use Newton's second law
F = m a
-18.75 m = m a
a = -18.75 m / s²
Answer:
20 degrees.
Explanation:
From Snell’s law of refraction:
sinθ1•n1 = sinθ2•n2
where θ1 is the incidence angle, θ2 is the refraction angle, n1 is the refraction index of light in medium1, and n2 is the refraction index for virgin olive oil. The incidence angle of the red light is θ1 = 30 degrees.
The red light is in air as medium1, so n1 (air) = 1.00029
So, to find θ2, the refracted angle:
sinθ1•1.00029 = sinθ2•1.464
sin(30)•1.00029 / 1.464 = sinθ2
0.5•1.00029 / 1.464 = sinθ2
sinθ2 = 0.3416291
θ2 = arcsin(0.3416291)
θ2 = 19.976 degrees
To the nearest degree,
θ2 = 20 degrees.
I have absolutely no clue