Answer:
4 s
Explanation:
u = 19.6 m/s, g = 9.8 m /s^2
Let the time taken to reach the maximum height is t.
Use first equation of motion.
v = u + at
At maximum height, final velocity v is zero.
0 = 19.6 - 9.8 x t
t = 19.6 / 9.8 = 2 s
As the air resistance be negligible, is time taken to reach the ground is also 2 sec.
So, total time taken be the ball to reach at original point = 2 + 2 = 4 s
Answer:
B. Tomatos reflect red light
Explanation:
The only reason colors exist is because the objects with color reflect all other light except for what they are portrayed as. White reflects all colors, and black absorbs all colors.
If you have any questions feel free to ask :)
Answer:
3.76 m/s
Explanation:
Instantaneous velocity: This can be defined as the velocity of an object in a non uniform motion. The S.I unit is m/s.
v' = dx(t)/dt..................... Equation 1
Where v' = instantaneous velocity, x = distance, t = time.
Given the expression,
x(t) = 28.0 m + (12.4 m/s)t - (0.0450 m/s³)t³
x(t) = 28 + 12.4t - 0.0450t³
Differentiating x(t) with respect to t.
dx(t)/dt = 12.4 - 0.135t²
dx(t)/dt = 12.4 - 0.135t²
When t = 8.00 s.
dx(t)/dt = 12.4 - 0.135(8)²
dx(t)/dt = 12.4 - 8.64
dx(t)/dt = 3.76 m/s.
Therefore,
v' = 3.76 m/s.
Hence, the instantaneous velocity = 3.76 m/s
Answer:
A) 5.2 x 10³ N
B) 8.8 x 10³ N
Explanation:
Part A)
= weight of the craft in downward direction = tension force in the cable when stationary = 7000 N
= Tension force in upward direction
= Drag force in upward direction = 1800 N
Force equation for the motion of craft is given as
-
-
= 0
7000 - 1800 -
= 0
= 5200 N
= 5.2 x 10³ N
Part B)
= weight of the craft in downward direction = tension force in the cable when stationary = 7000 N
= Tension force in upward direction
= Drag force in downward direction = 1800 N
Force equation for the motion of craft is given as
-
-
= 0
- 7000 - 1800 = 0
= 8800 N
= 8.8 x 10³ N
B I believe is the answer!
Hope this helps and have a great day!!!