Answer:
The value is ![v_o = 5.488 \ m/s](https://tex.z-dn.net/?f=v_o%20%3D%20%205.488%20%5C%20%20m%2Fs)
Explanation:
From the question we are told that
The emitted frequency increased by ![\Delta f = 1.6 \% = 0.016 \](https://tex.z-dn.net/?f=%5CDelta%20f%20%3D%20%201.6%20%5C%25%20%3D%200.016%20%5C)
Let assume that the initial value of the emitted frequency is
![f = 100\% = 1](https://tex.z-dn.net/?f=f%20%3D%20%20%20100%5C%25%20%20%3D%20%201)
Hence new frequency will be ![f_n = 1 + 0.016 = 1.016](https://tex.z-dn.net/?f=f_n%20%20%3D%20%201%20%2B%20%200.016%20%3D%201.016)
Generally from Doppler shift equation we have that
![f_1 = [\frac{ v \pm v_o}{v \pm + v_s } ] f](https://tex.z-dn.net/?f=f_1%20%3D%20%20%5B%5Cfrac%7B%20v%20%5Cpm%20v_o%7D%7Bv%20%5Cpm%20%2B%20v_s%20%7D%20%5D%20f)
Here v is the speed of sound with value ![v = 343 \ m/s](https://tex.z-dn.net/?f=v%20%3D%20%20343%20%5C%20m%2Fs)
is the velocity of the sound source which is
because it started from rest
is the observer velocity So
Generally given that the observer id moving towards the source, the Doppler frequency becomes
=>
=> ![v_o = 5.488 \ m/s](https://tex.z-dn.net/?f=v_o%20%3D%20%205.488%20%5C%20%20m%2Fs)