Acceleration is the change of velocity, and velocity is the change of distance. The opposite of finding change, or differentiation, is integration.
Acceleration = 1.3 m/s²
Velocity: ∫ 1.3 dx = 1.3x + c m/s
Distance: ∫ 1.3x dx = 1.3x²/2 + c m
Distance run: 1.3*3²/2 = 5.85 m
<em>What</em><em> </em><em>bad</em><em> </em><em>thing</em><em> </em><em>happened</em><em>?</em>
Answer:
Explanation:
We shall apply concept of Doppler's effect of apparent frequency to this problem . Here observer is moving sometimes towards and sometimes away from the source . When observer moves towards the source , apparent frequency is more than real frequency and when the observer moves away from the source , apparent frequency is less than real frequency . The apparent frequency depends upon velocity of observer . The formula for apparent frequency when observer is going away is as follows .
f = f₀ ( V - v₀ ) / V , f is apparent , f₀ is real frequency , V is velocity of sound and v is velocity of observer .
f will be lowest when v₀ is highest .
velocity of observer is highest when he is at the equilibrium position or at middle point .
So apparent frequency is lowest when observer is at the middle point and going away from the source while swinging to and from before the source of sound .
Answer:
71 rpm
Explanation:
Given that:
Angular momentum (L) = 0.26
Diameter = 25cm = 0.25 cm
Radius, r = (d/2) = 0.125m
Mass = 5.6 kg
Moment of inertia (I) = 2mr² / 5
I = (2 * 5.6 * 0.125^2) / 5
= 0.175
= 0.175 / 5
= 0.035 kgm²
Angular speed (w) ;
w = L / I
w = 0.26 / 0.035
= 7.4285714
= 7.429 rad/s
w = (7.429 * 60/2π)
w = 445.74 / 2π rpm
w = 70.941724
Angular speed = 70.94 rpm
= 71 rpm
The correct answer is D) The closet point in the Moon's orbit to Earth
This does not refer to the Moon only. It refers to any satellite and to its closest point to Earth.
Explanation:
Fluids exert both drag and lift forces on moving objects. Drag is the frictional force opposing motion. Lift is the force perpendicular to motion.
Some objects, like parachutes, are designed with large cross sectional areas to increase drag force. Usually though, objects are designed to minimize drag force. It's why cars, planes, and boats have sleek shapes.
Airplane wings have shapes called airfoils that generate lift. It's what makes them fly. The same shape is found in racecar spoilers. These spoilers use lift force to push down on the rear tires, increasing traction.