Answer:
1. Decrease the pH
2. The pH remains unchanged
3. Decrease the pH
Explanation:
We can calculate the pH of a weak acid using the following expression:
[1]
where,
Ka is the acid dissociation constant
Ca is the initial concentration of the acid
<em>State whether each of the following would increase, decrease, or leave the initial pH unchanged and explain your reasoning</em>
- <em>Using the same weak acid, but having a higher concentration. </em>According to eq. [1], a higher Ca leads to a higher [H⁺] and a lower pH.
- <em>Using 80.00 mL of this weak acid instead of 40.00 mL.</em> pH refers to a concentration, which is an intensive property, so it does not change when we change the amount of matter.
- <em>Using a different weak acid that has a larger Ka value.</em> According to eq. [1], a higher Ka leads to a higher [H⁺] and a lower pH.
Answer:
no work was needed. Blinking does not require using energy sometimes we blink without thinking.
Explanation:
Answer:

Explanation:
You can convert the <em>density</em> into <em>atomic density</em> using the <em>atomic weight </em>and Avogadro's number
A dimensional analysis is very helpful:

Follow the chain: g cancels with g, mol cancels with mol; at the end, what remains is atoms/cm³, which is what you want.
Use that with your data:

Answer:
The volume of cupboard is 2.0043 m³.
Explanation:
Given data:
width of cupboard = 1.31 m
length of cupboard = 0.9 m
height of cupboard = 1.70 m
Volume = ?
Solution:
Volume = length × width × height
Volume = 0.9 m × 1.31 m × 1.70 m
Volume = 2.0043 m³
The volume of cupboard is 2.0043 m³.
Hey there !
Molar mass HCl :
HCl =1.01 + 35.45 => 36.46 g/mol
Number of moles ( solute) :
n = m / mm
n = 9.63 / 36.46
n = 0.2641 moles
Therefore :
M = moles / volume ( L )
M = 0.2641 / 1.5
=> 0.176 M