Imagine we have <span>mass of solvent 1kg (1000g)
According to that: </span>

= 4.8 mole * 98 g/mole = 470g


m(H2SO4) which is =<span>470g
</span><span>m(solution) = m(H2SO4) + m(solvent) = 470 + 1000 = 1470 g
d(solution) = m(solution) / V(solution) =>
=> 1.249 g/mL = 1470 g / V(solution) =></span>
Yes because without movement the tow truck will not be moved with 15,000 N
The third one down: "When barium hydroxide is mixed with ammonium chloride, ice crystals form on the outside of the container."
This is because an endothermic reaction [process] takes in more energy than it releases. Therefore because a decrease in energy leads to a decrease in temperature, the ice crystals forming show that it must be a endothermic reaction [process].
Hope this helps! :)
AJ
One of the best buffer choice for pH = 8.0 is Tris with Ka value of 6.3 x 10^-9.
To support this answer, we first calculate for the pKa value as the negative logarithm of the Ka value:
pKa = -log Ka
For Tris, which is an abbreviation for 2-Amino-2-hydroxymethyl-propane-1,3 -diol and has a Ka value of 6.3 x 10^-9, the pKa is
pKa = -log Ka
= -log (6.3x10^-9)
= 8.2
We know that buffers work best when pH is equal to pKa:
pKa = 8.2 = pH
Therefore Tris would be a best buffer at pH = 8.0.
Answer: 4Kcal
Explanation:
H= mcø
M=200g
C= 1 cal/g/°c
Ø= 40-20=20°c
H= 200*1*20= 4000calories= 4Kcal