Now, you always beat him. Your grandfather is likely experiencing a slight decline in perceptual speed.
<u>Explanation:</u>
The speed of perception refers to the capacity to accurately (and completely) compare words letter, digits, objects, images, etc. When testing, these objects can be displayed simultaneously or one after the other. This type of test can be included in the proficiency test.
For example, we have also seen all the puzzles that ask the reader to notice the differences between the two pictures. The time it takes to recognize these differences is a measure of the speed of perception. Likewise, in getting rid of cards at the given situation, grandfather experiences a less decline in his perceptual speed.
The response is False, both bars, iron bars and plastic
bars have de same inertia, this characteristic does not depend on the type of
material, the inertia depends on his transverse section, since we can estimate
in the following formula
<span>Area moment of inertia Ixx = BH3/12</span>
<span>Area moment of inertia Iyy= HB3/12</span>
Answer:
The unit of speed is m/s.
The tension in the two chains T1 and T2 is 676.65 N and 542.53 N respectively.
<h3>Principle of moments</h3>
The Principle of Moments states that when a body is in equip, the sum of clockwise moment about a point is equal to the sum of anticlockwise moment about the same point.
The formula for calculating moment is given below:
- Moment = Force × perpendicular distance from the pivot
<h3>Calculating the tension in the chains</h3>
From the principle of moments:
Let tension in chain 1 be T1 and tension in chain 2 be T2.
T1 + T2 = 150 + 650 + 419
T1 + T2 =1219
Taking all distances from chain 1,
Sum of Moments = 0
419 × 0.5 + 150 × 0.85 + 650 × 0.9 = T2 × 1.7
T2 = 922/17
T2 = 542.35 N
Then, T1 = 1219 - 542.35
T1 = 676.65 N
Therefore, the tension in the two chains T1 and T2 is 676.65 N and 542.53 N respectively.
Learn more about tension and moments at: brainly.com/question/187404
brainly.com/question/14303536
5 What is the angular displacement at the end of the 25-mm-diameter shaft and the linear displacement of point A of Figure P5.5
<h3>What is
displacement ?</h3>
A displacement is a vector in geometry and mechanics that has a length equal to the shortest distance between a point P's initial and final positions. It calculates the length and angle of the net motion, or total motion, in a straight line from the starting point to the destination of the point trajectory. The translation that links the starting point and the ending point can be used to spot a displacement.
The final location xf of a point relative to its beginning position xi, or a relative position (derived from the motion), is another way to express a displacement. The difference between the end and beginning positions can be used to define the equivalent displacement vector
To learn more about displacement from the given link:
brainly.com/question/321442
#SPJ4