The final velocity () of the first astronaut will be greater than the <em>final velocity</em> of the second astronaut () to ensure that the total initial momentum of both astronauts is equal to the total final momentum of both astronauts <em>after throwing the ball</em>.
The given parameters;
- Mass of the first astronaut, = m₁
- Mass of the second astronaut, = m₂
- Initial velocity of the first astronaut, = v₁
- Initial velocity of the second astronaut, = v₂ > v₁
- Mass of the ball, = m
- Speed of the ball, = u
- Final velocity of the first astronaut, =
- Final velocity of the second astronaut, =
The final velocity of the first astronaut relative to the second astronaut after throwing the ball is determined by applying the principle of conservation of linear momentum.
if v₂ > v₁, then , to conserve the linear momentum.
Thus, the final velocity () of the first astronaut will be greater than the <em>final velocity</em> of the second astronaut () to ensure that the total initial momentum of both astronauts is equal to the total final momentum of both astronauts after throwing the ball.
Learn more here: brainly.com/question/24424291
Answer:
Δu=1300kJ/kg
Explanation:
Energy at the initial state
Is saturated vapor at initial pressure we have
Process 2-3 is a constant volume process
The overall in internal energy
Δu=u₁-u₃
We replace the values in equation
Δu=u₁-u₃
Δu=1300kJ/kg
Answer:
It's actually
F=ma
Force=Mass x Acceleration
So...when we inverse it..
It becomes:
B. a= F/m
Answer:
1 kg lead to earth is greater attraction as mass of earth is much more than 1kg lead.
Explanation:
Objects with more mass have more gravity. Gravity also gets weaker with distance. So, the closer objects are to each other, the stronger their gravitational pull is. Earth's gravity comes from all its mass