1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elodia [21]
3 years ago
8

Question 15: At the edge of a lake you throw a stone with a velocity of 29 m/s at an angle of 45°. The stone is in the air for 4

.23 s. How far did you throw the stone? (What is the range?)
I think I have this question's right answer, but I would like to check.
Physics
1 answer:
Marianna [84]3 years ago
8 0
Get your numbers gathered up and solve the problem in the ordered step
You might be interested in
Bill throws a tennis ball to his dog. He throws the ball at a speed of 15 m/s at an angle of 30° to the horizontal. Assume he th
Sidana [21]

1a) Bill and the dog must have a speed of 13.0 m/s

1b) The speed of the dog must be 22.5 m/s

2a) The ball passes over the outfielder's head at 3.33 s

2b) The ball passes 1.2 m above the glove

2c) The player can jump after 2.10 s or 3.13 s after the ball has been hit

2d) One solution is when the player is jumping up, the other solution is when the player is falling down

Explanation:

1a)

The motion of the ball in this problem is a projectile motion, so it follows a parabolic path which consists of two independent motions:

- A uniform motion (constant velocity) along the horizontal direction

- An accelerated motion with constant acceleration (acceleration of gravity) in the vertical direction

In part a), we want to know at what speed Bill and the dog have to run in order to intercept the ball as it lands on the ground: this means that Bill and the dog must have the same velocity as the horizontal velocity of the ball.

The ball's initial speed is

u = 15 m/s

And the angle of projection is

\theta=30^{\circ}

So, the ball's horizontal velocity is

v_x = u cos \theta = (15)(cos 30)=13.0 m/s

And therefore, Bill and the dog must have this speed.

1b)

For this part, we have to consider the vertical motion of the ball first.

The vertical position of the ball at time t is given by

y=u_yt+\frac{1}{2}at^2

where

u_y = u sin \theta = (15)(sin 30) = 7.5 m/s is the initial vertical velocity

a=g=-9.8 m/s^2 is the acceleration of gravity

The ball is at a position of y = 2 m above the ground when:

2=7.5t + \frac{1}{2}(-9.8)t^2\\4.9t^2-7.5t+2=0

Which has two solutions: t=0.34 s and t=1.19 s. We are told that the ball is falling to the ground, so we have to consider the second solution, t = 1.19 s.

The horizontal distance covered by the ball during this time is

d=v_x t =(13.0)(1.19)=15.5 m

The dog must be there 0.5 s before, so at a time

t' = t - 0.5 = 0.69 s

So, the speed of the dog must be

v_x' = \frac{d}{t'}=\frac{15.5}{0.69}=22.5 m/s

2a)

Here we just need to consider the horizontal motion of the ball.

The horizontal distance covered is

d=98 m

while the horizontal velocity of the ball is

v_x = u cos \theta = (34)(cos 30)=29.4 m/s

where u = 34 m/s is the initial speed.

So, the time taken for the ball to cover this distance is

t=\frac{d}{v_x}=\frac{98}{29.4}=3.33 s

2b)

Here we need to calculate the vertical position of the ball at t = 3.33 s.

The vertical position is given by

y= h + u_y t + \frac{1}{2}at^2

where

h = 1.2 m is the initial height

u_y = u sin \theta = (34)(sin 30)=17.0 m/s is the initial vertical velocity

a=g=-9.8 m/s^2 is the acceleration of gravity

Substituting t = 3.33 s,

y=1.2+(17)(3.33)+\frac{1}{2}(-9.8)(3.33)^2=3.5 m

And sinc the glove is at a height of y' = 2.3 m, the difference in height is

y - y' = 3.5 - 2.3 = 1.2 m

2c)

In order to intercept the ball, he jumps upward at a vertical speed of

u_y' = 7 m/s

So its position of the glove at time t' is

y'= h' + u_y' t' + \frac{1}{2}at'^2

where h' = 2.3 m is the initial height of the glove, and t' is the time from the moment when he jumps. To catch the ball, the height must be

y' = y = 3.5 m (the height of the ball)

Substituting and solving for t', we find

3.5 = 2.3 + 7t' -4.9t'^2\\4.9t'^2-7t'+12 = 0

Which has two solutions: t' = 0.20 s, t' = 1.23 s. But this is the time t' that the player takes to reach the same height of the ball: so the corresponding time after the ball has been hit is

t'' = t -t'

So we have two solutions:

t'' = 3.33 s - 0.20 s = 3.13 s\\t'' = 3.33 s - 1.23 s = 2.10 s

So, the player can jump after 2.10 s or after 3.13 s.

2d)

The reason for the two solutions is the following: the motion of the player is a free fall motion, so initially he jump upwards, then because of gravity he is accelerated downward, and therefore eventually he reaches a maximum height and then he  falls down.

Therefore, the two solutions corresponds to the two different part of the motion.

The first solution, t'' = 2.10 s, is the time at which the player catches the ball while he is in motion upward.

On the other hand, the second solution t'' = 3.13 s, is the time at which the player catches the ball while falling down.

Learn more about projectile motion:

brainly.com/question/8751410

#LearnwithBrainly

7 0
3 years ago
Calculate the acceleration of a bus that goes
Svet_ta [14]

The acceleration of the bus is 1.11 meters per second square to the direction of motion

Explanation:

Acceleration is the rate of change of velocity

The formula of the acceleration is a=\frac{v_{2}-v_{1}}{t} , where

  • v_{1} is the initial velocity
  • v_{2} is the final velocity
  • t is the time

A bus that goes  from 10 km/h to a speed of 50 km/h in 10 seconds

→ v_{1} = 10 km/h

→ v_{2} = 50 km/h

→ t = 10 seconds

Change the unite of the time from seconds to hour

→ 1 hour = 60 × 60 = 3600 seconds

→ 10 seconds = \frac{10}{3600}=\frac{1}{360} hour

Substitute these values in the formula of the acceleration above

→ a=\frac{50-10}{\frac{1}{360}}

→ a = 14400 km/h²

To change the unit of acceleration to meter per second change the

  kilometer to meter and the hour to seconds

→ 1 km = 1000 m

→ 1 hour = 3600 seconds

→ a=\frac{14400*1000}{(3600)^{2}}=\frac{10}{9}

→ a = 1.11 m/sec².

The acceleration of the bus is 1.11 meters per second square to the direction of motion

Learn more:

You can learn more about the acceleration in brainly.com/question/6323625

#LearnwithBrainly

4 0
4 years ago
If a 15g irregular shaped object is submerged in a graduated cylinder of water, the level rises from 10 ml to 25 ml, what is the
SashulF [63]

Answer:

one im so sry i have no idea. I have been researshing for about 30min and i cant find anything im so sry:/

Explanation:

6 0
3 years ago
An airplane is flying at a constant speed in a positive direction. It slows down when it approaches the airport where it's going
guapka [62]
Negative acceleration d. I think
6 0
3 years ago
A crane raises a crate with a mass of 150 kg to a height of 20 m. Given that
Virty [35]

Answer:

\boxed {\boxed {\sf 29,400 \ Joules}}

Explanation:

Gravitational potential energy is the energy an object possesses due to its position. It is the product of mass, height, and acceleration due to gravity.

E_P= m \times g \times h

The object has a mass of 150 kilograms and is raised to a height of 20 meters. Since this is on Earth, the acceleration due to gravity is 9.8 meters per square second.

  • m= 150 kg
  • g= 9.8 m/s²
  • h= 20 m

Substitute the values into the formula.

E_p= 150 \ kg \times 9.8 \ m/s^2 \times 20 \ m

Multiply the three numbers and their units together.

E_p=1470 \ kg*m/s^2 \times 20 m

E_p=29400 \ kg*m^2/s^2

Convert the units.

1 kilogram meter square per second squared (1 kg *m²/s²) is equal to 1 Joule (J). Our answer of 29,400 kg*m²/s² is equal to 29,400 Joules.

E_p= 29,400 \ J

The crate has <u>29,400 Joules</u> of potential energy.

7 0
3 years ago
Other questions:
  • What is the absolute value of the horizontal force that each athlete exerts against the ground?
    10·1 answer
  • Calculate the distance travelled by the van between 16.0s and 23.0s. Give your answer correct to 2 significant figures.
    12·1 answer
  • Calculate the density of a solid cube that
    9·1 answer
  • A mass spectrometer is being used to separate common oxygen-16 from the much rarer oxygen-18, taken from a sample of old glacial
    9·1 answer
  • Nearly all physics problems will use the unit m/s^2 for acceleration. Explain why the seconds are squared. Why isn't the unit gi
    10·1 answer
  • What is produced as the result of unequal warming of the earth's surface?
    13·1 answer
  • Help pleasseeee URGENT
    7·1 answer
  • If you have 100 W expended over 20 s how much energy did it take?
    5·1 answer
  • HELP PLEASE...Arnold built a machine to help deliver the morning paper.He had to pull with 38N of force to move a stack of paper
    7·1 answer
  • If there were no external forces acting on the two pucks, their complex motion could be described as the combination of the unif
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!