Answer:
The smaller board would be 2.75 feet and the longer one would be 10.25 feet.
Step-by-step explanation:
In order to find this, assume the shorter board is equal to x. Next, we would know that the longer board would be equal to x + 7.5. Using these two assumptions, we can add the lengths together, set equal to 13 and then solve for x.
x + (x + 7.5) = 13
2x + 7.5 = 13
2x = 5.5
x = 2.75
Now that we have the length of the shorter board, we can add 7.5 to it to get the larger one.
2.75 + 7.5 = 10.25
Answer:
D
Step-by-step explanation:
The external angle of a triangle is equal to the sum of the 2 opposite interior angles.
∠ BCD is an exterior angle of the triangle, thus
∠ BCD = 50° + 60 = 110° → D
Answer:
42°
Step-by-step explanation:
Sum of all the angles inside of any triangle is always 180°.
Therefore:
180 = y + 90 + 48
y = 180 - 90 - 48
y = 42°
<u>I</u><u>f</u><u> </u><u>w</u><u>e</u><u> </u><u>h</u><u>a</u><u>v</u><u>e</u><u> </u><u>t</u><u>o</u><u> </u><u>f</u><u>i</u><u>n</u><u>d</u><u> </u><u>t</u><u>h</u><u>e</u><u> </u><u>t</u><u>o</u><u>t</u><u>a</u><u>l</u><u> </u><u>n</u><u>u</u><u>m</u><u>b</u><u>e</u><u>r</u><u> </u><u>o</u><u>f</u><u> </u><u>c</u><u>o</u><u>i</u><u>n</u><u>s</u><u> </u><u>t</u><u>h</u><u>e</u><u>n</u><u> </u><u>w</u><u>e</u><u> </u><u>c</u><u>a</u><u>n</u><u> </u><u>u</u><u>s</u><u>e</u><u> </u><u>t</u><u>h</u><u>e</u><u> </u><u>f</u><u>o</u><u>l</u><u>l</u><u>o</u><u>w</u><u>i</u><u>n</u><u>g</u><u> </u><u>rule:</u>
- <u>I</u><u>f</u><u> </u><u>E</u><u>a</u><u>c</u><u>h</u><u> </u><u>P</u><u>u</u><u>r</u><u>s</u><u>e</u><u> </u><u>C</u><u>o</u><u>n</u><u>t</u><u>a</u><u>i</u><u>n</u><u>s</u><u> </u><u>8</u><u>c</u><u>o</u><u>i</u><u>n</u><u>s</u><u> </u><u>,</u><u>t</u><u>h</u><u>e</u><u>n</u><u> </u><u>w</u><u>e</u><u> </u><u>c</u><u>a</u><u>n</u><u> </u><u>f</u><u>i</u><u>n</u><u>d</u><u> </u><u>t</u><u>o</u><u>t</u><u>a</u><u>l</u><u> </u><u>n</u><u>u</u><u>m</u><u>b</u><u>e</u><u>r</u><u> </u><u>o</u><u>f</u><u> </u><u>c</u><u>o</u><u>i</u><u>n</u><u>s</u><u> </u><u>b</u><u>y</u><u> </u><u>m</u><u>u</u><u>l</u><u>t</u><u>i</u><u>p</u><u>l</u><u>y</u><u>i</u><u>n</u><u>g</u><u> </u><u>8</u><u> </u><u>t</u><u>o</u><u> </u><u>t</u><u>h</u><u>e</u><u> </u><u>n</u><u>u</u><u>m</u><u>b</u><u>e</u><u>r</u><u> </u><u>o</u><u>f</u><u> </u><u>t</u><u>o</u><u>t</u><u>a</u><u>l</u><u> </u><u>p</u><u>u</u><u>r</u><u>s</u><u>e</u>
<u>T</u><u>h</u><u>u</u><u>s</u><u>,</u>
<h3><u>R</u><u>u</u><u>l</u><u>e</u><u> </u><u>i</u><u>s</u><u> </u><u>:</u></h3>
<u>︎⠀⠀ ⠀⠀ ⠀⠀ ⠀</u><u>︎⠀⠀ ⠀⠀ ⠀</u><u>8</u><u>×</u><u>T</u><u>o</u><u>t</u><u>a</u><u>l</u><u> </u><u>N</u><u>u</u><u>m</u><u>b</u><u>e</u><u>r</u><u> </u><u>o</u><u>f</u><u> </u><u>P</u><u>u</u><u>r</u><u>s</u><u>e</u><u>.</u>
<h2><u>─━─━─━─━─━─━─━─━─━─━─━─━─</u></h2>
The highest point over the entire domain of a function or relation is absolute maximum whereas lowest point under the entire function is absolute minimum....