Displacement is a vector quantity. So, you incorporate the vector calculations when you try to determine the resultant vector. This is the shortest path from the starting point to the endpoint. If they are moving on one axis only, you use sign conventions. For motions moving to the left, use the negative sign. If it's moving to the right, then use the positive sign. Now, it the object moves 2 km to the left, and 2 km also to the right, the displacement is zero.
Displacement = 2 km - 2km = 0
Generally, the equation is:
<span>Displacement = Distance of motion to the right - Distance of motion to the left</span>
First off, you need to know the weight of the projectile, lift and drag coefficients something like a high Reynolds number is preferred, then use the gravitational constant of 9.8 meters per second squared those would be a good start to get closer to your goal
The description of the question provided above points out to the famous Big Bang Theory. In addition, this theory is among the most accepted by cosmologists because it fits like a glove to the phenomenon the universe is experiencing right now: it is expanding and distances between celestial bodies are getting farther and farther.
Answer:
high, low
Explanation:
- Energy always flows from a higher level to a lower level.
- It is analogous to the waterfall where waterfalls from a higher level to a lower level.
- So in the case of the pressure of the gas, when there are any numbers of molecules in a given volume of space. The gas is said to be at high pressure.
- When there are fewer molecules in the given volume. The gas is said to be at lower pressure.
- Due to a large number of atoms, the high-pressure gas exerts more force on the container than the force exerted by the low-pressure gas.
- If a hose is connected between these two containers, gas rushes from high pressure to the low pressure. Since the force exerted by the high-pressure gas is greater than that of low-pressure gas.
So, the wind tends to move from high-pressure areas to low pressure.