1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bazaltina [42]
3 years ago
14

If a battery causes a wire to carry a current of 4 Amps how many coulombs of charge flow past any point in the wire in 3 seconds

Physics
1 answer:
BabaBlast [244]3 years ago
7 0

▪▪▪▪▪▪▪▪▪▪▪▪▪  {\huge\mathfrak{Answer}}▪▪▪▪▪▪▪▪▪▪▪▪▪▪

According to above question ~

  • Current (I) = 4 Amperes

  • Time (t) = 3 seconds

  • Charge (q) = ?

Let's find the charge (q) by using formula ~

  • I =  \dfrac{q}{t}

  • 4 =  \dfrac{q}{3}

  • q = 4 \times 3

  • q = 12 \:  \: coulombs

Hence, 12 coulombs of charge flow past any point in the wire in 3 seconds

You might be interested in
The potential difference between the plates of a capacitor is 145 V. Midway between the plates, a proton and an electron are rel
aniked [119]

Answer:

= 2.52 x 10^ 6 m/s        

Explanation:

The force that acts on charged particles between capacitor plates =

F = (q) (Δv)  ÷ d

Here,  d = distance between the two plates

          q = charge of the charged particle

         Δv = voltage

Normally, the force that makes both proton and electron released from rest, giving the charge acceleration is F=m X a. where m= mass and a = acceleration

Poting this equation with the first one, we have:

m X a =  (q) (Δv)  ÷ d

So, the acceleration of a proton when moving towards a negatively charged plate is

a = (q) (Δv)  ÷ (d) (m) {proton}

Likewise, the acceleration of an electron when moving towards a positively charged plate is

a = (q) (Δv)  ÷ (d) (m) {electron}

Dividing the proton acceleration formula by the electron acceleration formula we have:

a (proton) / a (electron) = m (proton) / m(electron)

inserting equation of motion to get distance, s

s = ut + 1/2 at^2

recall that electron travel distance, d/2

d/2 = 1/2 at^2

making t the subject of the formula

we have, t =√(d ÷ a(electron))

The distance of proton:

d/2 =  ut + 1/2 at^2 [proton}

put d/2 =  ut + 1/2 at^2 [proton} into t =√(d ÷ a(electron))

Initial speed, ui = √(d ÷ a(electron)) = (d/2) - (1/2) x (d) (a(proton) + a(electron))

since acceleration wasn't given in the question, lets use mass(elect

ron)  ÷ mass(proton) rather than use (a(proton) + a(electron))

Therefore, intial speed= 1/2√((e X Δv) ÷ m(electron)) (1- m(electron)/ m(proton))

   Note, e = 1.60 x 10^-19

           m(electron) = 9.11 X 10^-31

            m(proton) = 1.67  X 10^-27

Input these values into the formula above, initial speed, UI =  

           = 2.52 x 10^ 6 m/s          

7 0
3 years ago
NEED HELP ASP<br> WILL GIVE POINTS OR WHATEVER
solniwko [45]

Answer:

you need to multiply the momentum and the mass

8 0
3 years ago
the resistance of a wire of length 80cm and of uniform area of cross-section 0.025cmsq., is found to be 1.50 ohm. Calculate spec
vivado [14]
Specific\ resistance\ =resistivity\\&#10;From\ formula\ on \ resistance:\ R= \frac{pL}{A}\ p-resistivity,\ L-length,\\ A-area\ of\ cross\ section\\&#10;p= \frac{R*A}{L}= \frac{1,5Ohm*0,025*10^{-4}m^2 }{80* 10^{-2}m }=0,0003515625 Ohm*m
3 0
3 years ago
Your cousin Jannik skis down a blue square ski slope, with an initial speed of 3.6 m/s. He travels 15 m down the mountain side b
fenix001 [56]

Answer: The loss of energy due to friction is equal to 1,253 J.

Explanation:

The problem tells us that the skier has an initial speed of 3.6 m/s, which means that his initial kinetic energy is as follows:

K₁ = 1/2 m v₁² = 1/2 . 58.0 Kg. (3.6)² (m/s)² =  376 J

After coming to a  flat landing, his final speed is 7.8 m/s, so the final kinetic energy is as follows:

K₂ = 1/2 m v₂² = 1/2. 58.0 Kg. (7.8)² (m/s)² = 1,764 J

Now, when skying down the slope the increase in kinetic energy only can come from another type of energy, in this case, gravitational potential energy.

If we take the ground flat level as a Zero reference, the initial gravitational potential energy, can be written as follows, by definition:

U₁ = m.g. h (1)

Now, we don't know the value of the height h, but we know that the incline has a 18º angle above the horizontal, and that the distance travelled along the incline is 15 m.

By definition, the sinus of an angle, is equal to the proportion between the height and the hypotenuse , so we can write the following equation:

sin 18º = h / 15 m ⇒ h = 15 m. sin 18º = 4.6 m

Replacing in (1), we get:

U₁ = 58.0 Kg. 9.8 m/s². 4.6 m = 2,641 J

So, we can get the total initial mechanical energy, as follows:

E₁ = K₁ + U₁ = 376 J + 2,641 J = 3,017 J

After arriving to the flat zone, all potential energy has become in kinetic energy, even though not completely, due to the effect of friction.

This remaining kinetic energy can be written as follows:

E₂ = K₂ = 1,764 J

The difference E₂-E₁, is the loss of energy due to friction forces acting during the travel along the 15 m path, and is as follows:

ΔE= E₂ - E₁ = 1,764 J - 3,017 J = -1,253 J

8 0
3 years ago
A train runs from New Delhi to Hyderabad it covers first of 420 km in 7 hours and the next distance of 360 km in 6 hours​
Mkey [24]

Explanation:

the answer is 16.7 miles or 60kmph

5 0
3 years ago
Read 2 more answers
Other questions:
  • A train is moving in the positive direction down a track. First the train speeds up, and then it slows down. What is its acceler
    11·2 answers
  • Can sumbody help me wit dis
    10·1 answer
  • Where does crystallization take place?
    13·1 answer
  • What is the final step in the fourth stage of technological design, after a product has been improved and approved?
    7·1 answer
  • What is formed when two or more
    11·2 answers
  • Air at 80 kPa and 400 K enters an adiabatic diffuser steadily at a rate of 6000 kg/h and leaves at 100 kPa. The velocity of the
    11·1 answer
  • A 0.200 m wire is moved parallel to a 0.500 T
    10·1 answer
  • This her sisterrrrrrrrrrrrr
    15·1 answer
  • 26 Select the correct answer. What happens when two polarizers are placed in a straight line, one behind the other? They allow l
    5·1 answer
  • Homes with multiple bathrooms have outlets connected in series with a red reset button in the system
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!