Answer:
the light waves bend or REFRACT
Explanation:
Answer:
solution:
to find the speed of a jogger use the following relation:
V
=
d
x
/d
t
=
7.5
×m
i
/
h
r
...........................(
1
)
in Above equation in x and t. Separating the variables and integrating,
∫
d
x
/7.5
×=
∫
d
t
+
C
or
−
4.7619
=
t
+
C
Here C =constant of integration.
x
=
0 at t
=
0
, we get: C
=
−
4.7619
now we have the relation to find the position and time for the jogger as:
−
4.7619 =
t
−
4.7619
.
.
.
.
.
.
.
.
.
(
2
)
Here
x is measured in miles and t in hours.
(a) To find the distance the jogger has run in 1 hr, we set t=1 in equation (2),
to get:
= −
4.7619
=
1
−
4.7619
= −
3.7619
or x
=
7.15
m
i
l
e
s
(b) To find the jogger's acceleration in m
i
l
/
differentiate
equation (1) with respect to time.
we have to eliminate x from the equation (1) using equation (2).
Eliminating x we get:
v
=
7.5×
Now differentiating above equation w.r.t time we get:
a
=
d
v/
d
t
=
−
0.675
/
At
t
=
0
the joggers acceleration is :
a
=
−
0.675
m
i
l
/
=
−
4.34
×
f
t
/
(c) required time for the jogger to run 6 miles is obtained by setting
x
=
6 in equation (2). We get:
−
4.7619
(
1
−
(
0.04
×
6 )
)^
7
/
10=
t
−
4.7619
or
t
=
0.832
h
r
s
Answer:
a,b,c,d,,f, g, j
Explanation:
e) equipotential lines are lines connecting points of equal potential
h) electric field inside the conductor is non-zero even when there is net movement of charge or non-zero current.
i) capacitors' plates are charged and an electric field exists between the plates.
Insomnia and night terrors
Answer:
Velocity of the car at the bottom of the slope: approximately
.
It would take approximately
for the car to travel from the top of the slope to the bottom.
Explanation:
The time of the travel needs to be found. Hence, make use of the SUVAT equation that does not include time.
- Let
denote the final velocity of the car. - Let
denote the initial velocity of the car. - Let
denote the acceleration of the car. - Let
denote the distance that this car travelled.
.
Given:
Rearrange the equation
and solve for
:
.
Calculate the time required for reaching this speed from
at
:
.