Explanation:
The newton's laws of motion are:
First law:
"A body will remain in its state of rest or of uniform motion along a path unless it is acted upon by an external force. ".
This is popularly called the law of inertia.
Second law:
"the acceleration of a body is produced by a net force that is inversely proportional to the mass of the body".
Third law:
"action and reaction forces are equal and opposite in direction".
learn more:
Newton's laws brainly.com/question/11411375
#learnwithBrainly
To develop the problem, we require the values concerning the conservation of momentum, specifically as given for collisions.
By definition the conservation of momentum tells us that,
To find the speed at which the arrow impacts the apple we turn to the equation of time, in which,

The linear velocity of an object is given by

Replacing the equation of time we have to,

Velocity two is neglected since there is no velocity of said target before the collision, thus,

Clearing for m_2

Answer:
The gravitational potential energy of the two-sphere system just as B is released is
U = -[(G)(MA)(MB)/x₁]
where G = Gravitational constant
G = (6.7 × 10⁻¹¹) Nm²/kg²
Explanation:
The gravitational potential energy of two masses (m and M), separated by a distance, d, is given as
U = -(GMm/d)
For our question,
Mass of object 1 = MA
Mass of object 2 = MB
Distance between them = x₁
U = -[(G)(MA)(MB)/x₁]
where G = Gravitational constant
G = (6.7 × 10⁻¹¹) Nm²/kg²
Hope this Helps!!!