<span>First law of thermodynamics. This conservation law states that energy cannot be created or destroyed but can be changed from one form to another. In essence, energy is always conserved but can be converted from one form into another. Like when an engine burns fuel, it converts the energy stored in the fuel's chemical bonds into useful mechanical energy and then into heat, or more specifically, the melting ice cubes. Yeast breaks down maltose into glucose to produce alcohol and Co2 in the fermentation process. This is a prime example of the 1st law of thermodynamics. No form of usable energy is really lost; it only changes from one form to another</span>
Answer:
explanation of this effect is the photoelectric effect
Explanation:
Let's describe the process, when light of large wavelength falls, this implies a small energy, according to Planck's equation
E = h f =
the energy of the photons is not enough to carry out an electronic transition between two states of the material, when we decrease the wavelength (the energy of the photons increases), the point is reached where the energy of the beam is equal to some energy of a transition, by which the electrons are promoted and since we can see a certain charge, as the atoms are neutral, some electrons must be removed from the material, this is represented in the macroscopic case as the work function of the material, consequently a unbalanced load that is what we can measure.
When we increase the lightning intensity, what we do is that we increase the number of photons and if each photon can remove an electron, by removing the electrons the difference between it and the positive charge (fixed in the nuclei) increases.
We can analyze the interaction of the photon and the electron as a particular collision.
The explanation of this effect was made by Einstein in his explained of the photoelectric effect
Answer: about 100 km[kilometers] thick
Explanation:
Answer:
Speed of gamma rays = 3 x 10⁸ m/s
Explanation:
Given:
Frequency of gamma ray = 3 x 10¹⁹ Hz
Wavelength of gamma rays = 1 x 10⁻¹¹ meter
Find:
Speed of gamma rays
Computation:
Velocity = Frequency x wavelength
Speed of gamma rays = Frequency of gamma ray x Wavelength of gamma rays
Speed of gamma rays = [3 x 10¹⁹][1 x 10⁻¹¹]
Speed of gamma rays = 3 x [10¹⁹⁻¹¹]
Speed of gamma rays = 3 x [10⁸]
Speed of gamma rays = 3 x 10⁸ m/s