Answer is b hope this helps
Answer:
It is explained in the explanation section
Explanation:
When the lift starts going downwards, it will start accelerating downwards. After a while, it will start moving with a constant velocity.
Constant velocity means that acceleration is zero and so the man will not feel any weight loss.
Now, Once the lift achieves constant velocity the acceleration is zero hence he will not experience any weight loss.
However, when the lift is in uniform motion, the lift and the man will fall down with an acceleration(a) that is less than that due to gravity(g) . Thus, the man will feel an apparent weight F which is not equal to zero.
Answer:
See below
Explanation:
<u>I will use 3 x 10^8 m/s for speed or wave</u>
speed = wavelength * frequency
3 x 10^8 = w * 7.34 x 10^2 <====== are you sure this isn't KILO Hz ?
w = <u>408719. 3 meters </u>
Answer:
the density of mobile electrons in the material is 3.4716 × 10²⁵ m⁻³
Explanation:
Given the data in the question;
we make use of the following expression;
hall Voltage VH = IB / ned
where I = 2.25 A
B = 0.685 T
d = 0.107 mm = 0.107 × 10⁻³ m
e = 1.602×10⁻¹⁹ C
VH = 2.59 mV = 2.59 × 10⁻³ volt
n is the electron density
so from the form; VH = IB / ned
VHned = IB
n = IB / VHed
so we substitute
n = (2.25 × 0.685) / ( 2.59 × 10⁻³ × 1.602×10⁻¹⁹ × 0.107 × 10⁻³ )
n = 1.54125 / 4.4396226 × 10⁻²⁶
n = 3.4716 × 10²⁵ m⁻³
Therefore, the density of mobile electrons in the material is 3.4716 × 10²⁵ m⁻³