Answer:

Explanation:
Molarity is a measure of concentration in moles per liter.

The solution has a molarity of 1.2 M or 1.2 moles per liter. There are 4.0 moles of NaCl, the solute. We don't know the liters of solution, so we can use x.
- molarity= 1.2 mol/L
- moles of solute= 4.0 mol
- liters of solution =x
Substitute the values into the formula.

Since we are solving for x, we must isolate the variable. Begin by cross multiply (multiply the 1st numerator and 2nd denominator, then the 1st denominator and 2nd numerator.



x is being multiplied by 1.2 moles per liter. The inverse of multiplication is division, so divide both sides by 1.2 mol/L


The units of moles (mol) will cancel.


The original measurements both have 2 significant figures, so our answer must have the same. For the number we found, this is the tenths place.
The 3 in the hundredth place tells us to leave the 3 in the tenths place.

Approximately <u>3.3 liters of solution</u> are needed to make a 1.2 M solution with 4.0 moles of sodium chloride.
Protons=47
nuetrons=61
electrons=47
... to be called elements<span>. This lesson shows </span>you how to<span> predict the </span>numbers<span> of </span>neutrons, electrons, andprotons<span> of the isotopes they are likely to find in nature. (</span><span>cont.) ... What </span>kind<span> of </span>generalization can you make<span> about how the </span>number<span> of </span>protons<span> and </span>neutrons<span> are </span>related<span> to </span>each other<span> in the </span>elements<span>? Unit 1 • Investigation IV</span>
Answer:
can we see the type that is shown?
Answer:
746 moles of H2O are been produced from 373 moles of Al.
Explanation:
For every 3 moles of aluminum, you get 6 moles of H2O (double). Therefore, every 373 moles of Al, you will get double as well, that is 746 m.