A= 6
B= 2
C= 1
D= 5
E= 3
F= 4
Answer:
Chemical reactions do not involve changes in the chemical bonds that join
atoms in compounds :
<u>False</u>
Explanation:
Chemical reaction are the reaction in which old bonds break and new bonds are formed . The formation of new bond result in formation of new compounds . This happen because new bond are result of linking different atoms by the bond.
For example : Water formation from Oxygen and Hydrogen is a chemical process :

Original(old) bonds are :
H-H bond in H2 and O-O bonds in O2
In H2 = Hydrogen is joined to Hydrogen
IN O2 = Oxygen is joined to oxygen
New Bonds =
O-H bonds in water (H2O)
Oxygen is joined to hydrogen = New Bond formation
Hence,
<u>Chemical reactions do involve changes in the chemical bonds that join
</u>
<u>atoms in compounds</u>
<u />
Answer:
1) acetylide
2) enol
3) aldehydes
4) tautomers
5) alkynes
6) Hydroboration
7) Keto
8) methyl ketones
Explanation:
Acetylide anions (R-C≡C^-) is a strong nucleophile. Being a strong nucleophile, we can use it to open up an epoxide ring by SN2 mechanism. The attack of the acetylide ion occurs from the backside of the epoxide ring. It must attack at the less substituted side of the epoxide.
Oxomercuration of alkynes and hydroboration of alkynes are similar reactions in that they both yield carbonyl compounds that often exhibit keto-enol tautomerism.
The equilibrium position may lie towards the Keto form of the compound. Usually, if terminal alkynes are used, the product of the reaction is a methyl ketone.
Answer:
51.2g of CO2
Explanation:
The first step is to balance the reaction equation as shown in the solution attached. Without balancing the reaction equation, one can never obtain the correct answer! Then obtain the masses of octane reacted and carbon dioxide produced from the stoichiometric equation. After that, we now compare it with what is given as shown in the image attached.
Answer:
2.68 cm^3
Explanation:
Density= Mass/Volume
so...
8.96 g/cm^3 = 24.01 g/ V
and then u solve so it would be 2.68 cm ^3
((: