Answer:
The starting position of this object is 3 m
The object is traveling at a velocity of 3 m/s
Explanation:
Answer:
3.07 Cal/g
Explanation:
Step 1: Calculate the heat absorbed by the calorimeter
We will use the following expression.
Q = C × ΔT
where,
- C: heat capacity of the calorimeter (37.60 kJ/K = 37.60 kJ/°C)
- ΔT: temperature change (2.29 °C)
Q = 37.60 kJ/°C × 2.29 °C = 86.1 kJ
According to the law of conservation of energy, the heat released by the candy has the same magnitude as the heat absorbed by the calorimeter.
Step 2: Convert 86.1 kJ to Cal
We will use the conversion factor 1 Cal = 4.186 kJ.
86.1 kJ × 1 Cal/4.186 kJ = 20.6 Cal
Step 3: Calculate the number of Cal per gram of candy
20.6 Cal/6.70 g = 3.07 Cal/g
1) <u>Stereo-selective (or enantioselective)</u> reactions form predominately or exclusively one enantiomer.
2) Epoxidation is the addition of a single oxygen atom to an alkene to form an epoxide.
3) <u>Hydrogenation (or reduction)</u> of an alkene forms an alkane by addition of H₂.
4) <u>Dihydroxylation</u> is the addition of two hydroxy groups to a double forming, a 1,2-diol or glycol.
5) <u>oxidative</u> cleavage of an alkene breaks both the σ and π bonds of the double bond to form two carbonyl groups.
6) <u>Regioselective</u> reactions form predominately or exclusively one constitutional isomer.
7) <u>Syn</u> dihydroxylation results when an alkene is treated KMnO4 or OsO4, where each reagent adds two oxygen atoms to the same side of the double bond.
Answer: A volume of 500 mL water is required to prepare 0.1 M
from 100 ml of 0.5 M solution.
Explanation:
Given:
= 0.1 M,
= ?
= 0.5 M,
= 100 mL
Formula used to calculate the volume of water is as follows.

Substitute the values into above formula as follows.

Thus, we can conclude that a volume of 500 mL water is required to prepare 0.1 M
from 100 ml of 0.5 M solution.