A solution has a pOH of 7. 1 at 10∘c. Then the pH of the solution given that kw=2. 93×10−15 at this temperature is 7.4 .
It is given that,
pOH of solution = 7.1
Kw =2.93×10^(-15)
Firstly, we will calculate the value of pKw
The expression which we used to calculate the pKw is,
pKw=-log [Kw]
Now by putting the value of Kw in this expression,
pKw =−log{2.93×10^(-15)}
pKw =15log(2.93)
pKw=14.5
Now we have to calculate the pH of the solution.
As we know that,
pH+pOH=pKw
Now put all the given values in this formula,
pH+7.1=14.5
pH=7.4
Therefore, we find the value of pH of the solution is, 7.4.
learn more about pH value:
brainly.com/question/12942138
#SPJ4
The specific heat capacity is intensive, and does not depend on the quantity.
We can categorize a property of the compound as either intensive or extensive when defining a particular aspect of it. The extent of a drug or compound is a quality that is influenced by the sample size used. However, the intense property is independent of the quantity (we can say that it is independent on the amount of the sample used). One such example of an intensive property is density.
The specific heat capacity of a substance or a compound describes the amount of heat (in Joules) needed to increase the temperature of one gram of the substance by 1 unit.
The specific heat capacity is independent on the amount of substance used, therefore, it is classified as an intensive property of a substance. The specific heat capacity will not depend on the mass of the given substance and it will be a constant value for each substance.
So the specific heat capacity is intensive, and does not depend on the quantity, but the heat capacity is extensive, so two grams of liquid water have twice the heat capacitance of 1 gram, but the specific heat capacity, the heat capacity per gram, is the same, 4.184 (J/g.K).
To learn more about the specific heat capacity please click on the link brainly.com/question/16559442
#SPJ4