Answer:
Explanation:
It is given that,
Number of turns in the coil, N = 220
Diameter of the coil, d = 4.4 cm
Radius of the coil, r = 2.2 cm = 0.022 m
Magnetic field produced by the poles of magnet, 
Current flowing in the coil, I = 15 A
Let M is the coil's magnetic dipole moment. Its formula is given by :



So, the coil's magnetic dipole moment is
. Hence, this is the required solution.
Answer:
I'm not sure but I think it's 35-39
Linear momentum is the product of mass and velocity. In this case, it is simply:
Answer:
Increasing its charge
Increasing the field strength
Explanation:
For a charged particle moving in a circular path in a uniform magnetic field, the centripetal force is provided by the magnetic force, so we can write:

where
q is the charge
v is the velocity
B is the magnetic field
m is the mass
r is the radius of the orbit
The period of the motion is

Re-arranging for r

And substituting into the previous equation

Solving for T,

So we see that the period is:
- proportional to the charge and the magnetic field
- inversely proportional to the mass and the square of the speed
So the following will increase the period of the particle's motion:
Increasing its charge
Increasing the field strength