Answer:
A) speed = 3144287.425 m/s
B) period = 8.57x10^-8 s
C) KE = 3.302x10^-14 J
D) potential difference = 103187.5 V
Explanation:
Detailed explanation and calculation is shown in the image below.
Answer:
A = 10 m amplitude
m = 3 kg mass of object
Vm = 5 m/s
w A = Vm where w = omega
w = 2 * pi * f
2 * pi * f 10 = 5
f = 5 / (20 * pi) = .0796 / sec
Answer:
acceleration
acceleration is the rate at which velocity change
i think
Answer:
While lifting two object the machine needs the different momentum for different mass object.
Explanation:
- Momentum is the quantity of motion contained in an object. Usually it is measured by the product of mass and velocity.
- Momentum of first mass = 2 kg × 2 m/sec = 4 kg m/sec
- Momentum of second mass = 4 kg × 3 m/sec = 12 kg m/sec
- So the machine requires higher mass in motion for second object ( i.e. momentum) than the first one while lifting.
Here is the full question
Suppose there are 10,000 civilizations in the Milky Way Galaxy. If the civilizations were randomly distributed throughout the disk of the galaxy, about how far (on average) would it be to the nearest civilization?
(Hint: Start by finding the area of the Milky Way's disk, assuming that it is circular and 100,000 light-years in diameter. Then find the average area per civilization, and use the distance across this area to estimate the distance between civilizations.)
Answer:
1000 light-years (ly)
Explanation:
If we go by the hint; The area of the disk can be expressed as:

where D = 100, 000 ly
Let's divide the Area by the number of civilization; if we do that ; we will be able to get 'n' disk that is randomly distributed; so ;

The distance between each disk is further calculated by finding the radius of the density which is shown as follows:



replacing d =
in the equation above; we have:




The distance (s) between each civilization = 
= 2 (500 ly)
= 1000 light-years (ly)