The second diver have to leap to make a competitive splash by 4.08 m high.
<h3>What is potential energy?</h3>
The energy by virtue of its position is called the potential energy.
PE = mgh
where, g = 9.81 m/s²
Given is the diver jumps from a 3.00-m platform. one diver has a mass of 136 kg and simply steps off the platform. another diver has a mass of 100 kg and leaps upward from the platform.
The potential energy of the first diver must be equal to the second diver.
P.E₁ = P.E₂
m₁gh₁ = m₂gh₂
Substitute the vales, we have
136 x 3 = 100 x h₂
h₂ = ₂4.08 m
Thus, the second diver need to leap by 4.08 m high.
Learn more about potential energy.
brainly.com/question/24284560
#SPJ1
Answer:
recall that heat absorbed released is given by
Q = mc*(T2 - T1)
where
m = mass (in g)
c = specific heat capacity (in J/g-k)
T = temperature (in C or K)
*note: Q is (+) when heat is absorbed and (-) when heat is released.
substituting,
Q = (480)*(0.97)*(234 - 22)
Q = 98707 J = 98.7 kJ
Explanation:
It’s true all the way. It’s true
Answer:

Explanation:
Diffraction is observed when a wave is distorted by an obstacle whose dimensions are comparable to the wavelength. The simplest case corresponds to the Fraunhofer diffraction, in which the obstacle is a long, narrow slit, so we can ignore the effects of extremes.
This is a simple case, in which we can use the Fraunhofer single slit diffraction equation:

Where:

Solving for λ:

Replacing the data provided by the problem:
