<span>1. Plasma membrane - also known as cell membrane. It is 'the skin of a cell', which acts as a physically controlling barrier for the entrance and exit of materials. It's made up of proteins and lipids.
2. Cytoplasm - everything inside the cell (but not including the nucleus). Much of the cytoplasm is a transparent and gel-like material known as cytosol; cell structures are suspended in it.
3. Ribosomes - these are organelles that are in charge of making proteins.
<span>4. DNA - Molecules containing the genetic code of a cell, which tells the cell what to do. It is located in the nucleus for eukaryotic cells; for prokaryotic cells, it is located in a part of the cell called the nucleoid.</span></span>
Answer: because of air resistance. See explanation for further details.
Explanation: Galileo performed an experiment to proof that the time of descent of two different masses is independent of time.
But in reality this is most likely not true because of air resistance and other fluid frictional effects in consideration.
If the experiment is performed in a vacuum, it will always be true that time is independent of masses of two falling objects.
Answer:
-0.04194 V
Explanation:
= Number of turns in outer solenoid = 330
= Number of turns in inner solenoid = 22
= Current in inner solenoid = 0.14 A
= Rate of change of current = 1800 A/s
= Vacuum permeability =
r = Radius = 0.0115 m
Magnetic field is given by
The average magnetic flux through each turn of the inner solenoid is
Magnetic flux is given by
Mutual inductance is given by
The mutual inductance of the two solenoids is
Induced emf is given by
The emf induced in the outer solenoid by the changing current inthe inner solenoid is -0.04194 V
Answer: 329.28 m/s
Explanation:
Given that:
Distance of sound = 823.2 m
Time taken for sound = 2.5 seconds
The speed of traveling sound = ?
Speed is obtained by dividing the distance travelled by the time taken for the travel.
Speed = Distance / time
Speed = 823.2m/2.5 seconds
Speed = 329.28 m/s
Thus, the sound traveling as fast as 329.28 m/s