Answer:
D. a heat engine that uses heat to do work
The answer is D
Friction acts as a centripetal force in the case of a car turning. The friction creates a tangential force allowing the car to turn.
Tension can act as a centripetal force in the case of circles. Such as swinging a mass on a string, the tension force allows it to move in a curved path.
Gravity acts as a centripetal force in the case of satellites. The gravity keeps the satellite within the orbit.
Answer:
for this problem, 2.5 = (5+2/2)-(5-2/2)erf (50×10-6m/2Dt)
It now becomes necessary to compute the diffusion coefficient at 750°C (1023 K) given that D0= 8.5 ×10-5m2/s and Qd= 202,100 J/mol.
we have D= D0exp( -Qd/RT)
=(8.5×105m2/s)exp(-202,100/8.31×1023)
= 4.03 ×10-15m2/s
By Newton's second law,
<em>n</em> + (-<em>w</em>) = 0
<em>p</em> + (-<em>f</em> ) = (20 kg) (2 m/s²)
where <em>n</em> is the magnitude of the normal force, <em>w</em> is the weight of the box, <em>p</em> is the magnitude of the applied force (<em>p</em> for <u>p</u>ush or <u>p</u>ull), and <em>f</em> is the magnitude of the friction force.
Calculate the weight of the box:
<em>w</em> = (20 kg) (9.80 m/s²) = 196 N
Then
<em>n</em> = <em>w</em> = 196 N
and
<em>f</em> = <em>µ</em> <em>n</em> = 0.5 (196 N) = 98 N
Now solve for <em>p</em> :
<em>p</em> - 98 N = 40 N
<em>p</em> = 138 N