Answer:
Current, I = 2.3 A
Explanation:
We have,
Voltage of the battery in a circuit is 9 volts
Resistance of the circuit is 4 ohms
It is required to find the current in a circuit. When the voltage and the resistance of the circuit is given then we can find the current in it is given by Ohm's law as :

I is electric current

or
I = 2.3 A
So, the current in the circuit is 2.3 A.
This had to do with gain power and trade inequality business
<h2>Answer: I know when it comes to magnetic objects the magnet always pulls not push.</h2>
Answer: (B) There is complete destructive interference between the incoming and reflected waves
Explanation:
For example, if you pluck a guitar the waves will travel back and forth. They consist of nodes and anti-nodes. It is created, when the wave traveling to one side and bounces of the other end and comes back. As it travels to the other side, it is reflected thus, comes back. So standing waves occurs when there is interference.
When the wave is produced, the points where the string is not moving are called nodes and where they are moving are called anti-nodes. The positions where nodes are produced, destructive interference occurs and where anti-nodes are produced, constructive interference occurs
Answer:
Circle
Explanation:
When a charged particle is in motion in a region with magnetic field, the particle experiences a force whose magnitude is given by

where
q is the charge
v is the velocity of the particle
B is the strength of the magnetic field
is the angle between the directions of v and B
In this problem, the velocity of the particle is perpendicular to the magnetic field, so

and the formula reduces to

Also, the direction of this force is perpendicular to the direction of motion of the particle. This means that as the charge moves in the region of the magnetic field, the force acting on it acts as a centripetal force: therefore, the particle will start moving by unifom circular motion, with constant speed (because the magnetic force does no work on the particle, since it is perpendicular to the direction of motion).
So, the path of the particle will be a circle.