Answer:
Force the floor exerts on the passenger is 833 N.
Explanation:
- Weight of passenger (
) = mg = 85 × 9.8 N = 833 N
- Force the floor exerts on the passenger (
) = ?
- For the elevator with the speed as 2.0 m/s the net force is zero, it means that the force is balanced.
i.e.
= -
= -mg = 833 N
hence
is 833 N
- If the lift was not at a constant speed i.e. if it had acceleration (
) then the case would be different.
Answer:
2.64 m/s
Explanation:
Given that a 600 kilogram great "yellow" shark swimming to the right at a speed of 3 meters traveled each second as it tries to get lunch. An unsuspecting 100 kilogram blue fin tuna is minding its own business swimming to the left at a speed of 0.5 meters traveled each second. GULP! After the great "yellow" shark "collides" with the blue fin tuna
Momentum = MV
Momentum of the yellow shark before collision = 600 × 3 = 1800 kgm/s
Momentum of the tun final before collision = 100 × 0.5 = 50 kgm/s
Total momentum before collision = 1800 + 50 = 1850 kgm/s
Let's assume that they move together after collision. Then,
1850 = ( 600 + 100 ) V
1850 = 700V
V = 1850 / 700
V = 2.64285 m/s
Therefore, the momentum of the shark after collision is 2.64 m/ s approximately
Answer:
When primary coil is exited by sin wave,this will result in sin wave in secondary coil as well.According to law,flux induced in the secondary coil will have same waveform as in the primary coil.
Answer:
Torque, 
Explanation:
It is given that,
Length of the wrench, l = 0.5 m
Force acting on the wrench, F = 80 N
The force is acting upward at an angle of 60.0° with respect to a line from the bolt through the end of the wrench. We need to find the torque is applied to the nut. We know that torque acting on an object is equal to the cross product of force and distance. It is given by :



So, the torque is applied to the nut is 34.6 N.m. Hence, this is the required solution.
Answer:
8.874
Explanation:
You need to times 5.22 kg and 1.7 m/s to get 8.874.