The important thing to note here is the direction of motion of the test rocket. Since it mentions that the rocket travels vertically upwards, then this motion can be applied to rectilinear equations that are derived from Newton's Laws of Motions.These useful equations are:
y = v₁t + 1/2 at²
a = (v₂-v₁)/t
where
y is the vertical distance travelled
v₁ is the initial velocity
v₂ is the final velocity
t is the time
a is the acceleration
When a test rocket is launched, there is an initial velocity in order to launch it to the sky. However, it would gradually reach terminal velocity in the solar system. At this point, the final velocity is equal to 0. So, v₂ = 0. Let's solve the second equation first.
a = (v₂-v₁)/t
a = (0-30)/t
a = -30/t
Let's substitute a to the first equation:
y = v₁t + 1/2 at²
49 = 30t + 1/2 (-30/t)t²
49 = 30t -15t
49 = 15 t
t = 49/15
t = 3.27 seconds
B. How much work can be done in a given time. That’s why it’s measured occasionally I. “Horsepower.” It’s your ability to work fast and far.
Answer:
Part a)

Part b)

Explanation:
Part a)
If block is sliding up then net force must be zero and friction will be in opposite to the direction of motion of the block


so we have





Part b)
If block is sliding down then net force must be zero and friction will be in opposite to the direction of motion of the block


so we have





The animals need less food people it is winter time.
Answer:
Ratio of series current to parallel
= 1 : 8
Explanation:
Total resistance Rt
For series, Rt = 2+2+2+2 = 4ohms
For parallel, 1/Rt = 1/2 + 1/2 + 1/2 + 1/2
1/Rt = 4/2, Rt = 2/4 ohms.
If we use a 1V battery, then,
I = V/Rt
I = 1/4 = 0.25 ampere for series arrangement.
I = 1/0.5 = 2 ohms.
Ratio of current of series to parallel = 0.25 : 2
= 1 : 8