Answer:
the dimensions that minimize the cost of the cylinder are R= 3.85 cm and L=12.88 cm
Step-by-step explanation:
since the volume of a cylinder is
V= π*R²*L → L =V/ (π*R²)
the cost function is
Cost = cost of side material * side area + cost of top and bottom material * top and bottom area
C = a* 2*π*R*L + b* 2*π*R²
replacing the value of L
C = a* 2*π*R* V/ (π*R²) + b* 2*π*R² = a* 2*V/R + b* 2*π*R²
then the optimal radius for minimum cost can be found when the derivative of the cost with respect to the radius equals 0 , then
dC/dR = -2*a*V/R² + 4*π*b*R = 0
4*π*b*R = 2*a*V/R²
R³ = a*V/(2*π*b)
R= ∛( a*V/(2*π*b))
replacing values
R= ∛( a*V/(2*π*b)) = ∛(0.03$/cm² * 600 cm³ /(2*π* 0.05$/cm²) )= 3.85 cm
then
L =V/ (π*R²) = 600 cm³/(π*(3.85 cm)²) = 12.88 cm
therefore the dimensions that minimize the cost of the cylinder are R= 3.85 cm and L=12.88 cm
Answer:
Step-by-step explanation:
y=9x-1
8x-4y=92
substitute y=9x-1
8x-4(9x-1)=92
8x-36x+4=92
-28x+4=92
-28x=92-4=88
x=88/-28=22/-7 = -3.14
y = 9(-3.14) -1 = -28.26-1 = -29.26
Answer:
A.-2x2+-1
Step-by-step explanation:
(-7x+5)-(2x2-8x+6)
-7x+5-2x2+8x-6 then collect like terms
-2x2-7x+8x+5-6
-2x2-x+1
If it's helpful ❤❤❤
THANK YOU