Answer:
The process by which the balloon is attracted and possibly sticks to the wall is known as static electricity which is the attraction or repulsion between electric charges which are not free to move.
The wall is an insulator.
Explanation:
When a balloon is blown and tied off, and then the balloon is rubbed on the woolly object once in one direction, and the side that was rubbed against the wool is brought near a wall and then released, it is observed that the balloon is attracted to and sticks to the wall. The above observation is due to static electricity.
Static electricity refers to electric charges that are not free to move or that are static. One of the means of generating such charges is by friction. When the balloon is rubbed on the woollen material, electrons are given away to the balloon's surface. Since the balloon is an insulator (materials which do not allow electricity to pass through them easily), the electrons are not free to move. When the balloon is brought near to a wall, there is a rearrangement of the charges present on the wall. Negative charges on the wall move farther away while the positive charges on the wall are attracted to the electrons on the balloon's surface. Because the wall is also an insulator, the charges are not discharged immediately. Therefore, this attraction between opposite charges as well as the static nature of the charges results in the balloon sticking to the wall.
Answer:
Explanation:
1 g is 9.8 m/s^2 the problem wants the results in km/h so we'll fix that really quick.
9.8 m/s^2 (1 km/1000m)(60 sec/1 min)^2(60 min/1 hour)^2 = 127008 km/hour^2
Now, I'm assuming the ship is starting from rest, and hopefully you know your physics equations. We are going to use vf = vi + at. Everything is just given, or we can assume, so I'll just solve.
vf = vi + at
vf = 0 + 127008 km/hour^2 * 24 hours
vf = 3,048,192 km/hour
If there's anything that doesn't make sense let me know.
Answer:
we measure sound intensity in <em><u>D</u></em><em><u>ecibels</u></em>.
Answer: having to push a rough and heavy box across the floor to move it
Explanation:
The Friction force is any force that is in opposite direction of the motion of an object or fluid due to the contact of this object or fluid with other bodies.
In this sense, there are different types of friction force thath are useful in different situations:
-The <u>Static friction force</u> prevents surfaces from slipping across each other. For example, the friction between your feet and the floor keeping you from slipping.
-The <u>kinetic friction force</u> as the force that helps the tires in a moving vehicle to slow down and stop when necessary.
However, if you want to push a heavy box across the floor to move it, the friction force will not be useful at all.