44 x 12. I got the 12 from the total of 12 months in a year.
44 > 40
x
12 > 10
----------
The way my teacher taught me how to estimate is look at the neighbor to 44 and 12. The only time 44 can become 50, is when the neighbor is 5 or up. Same thing for 12. Now, multiply 40 and 10.
40 x 10 = 400.
Therefore, your estimate is 400.
The real answer is 520 breaths.
Answer: You will only see the color that cellophane lets through
Explanation:
Let's begin by the fact the whole electromagnetic spectrum is known as "white light", which is composed by a range of colors (wavelengths).
Now, if we have a source with white light (the Sun, for example) and we interpose a cellophane of any color (let's choose red), this cellophane will act as a filter and will only let pass the color of the cellophane.
This is because the filter will absorb the other colors of the spectrum.
Answer:
The answer to your question is the letter A) F = 9.23 x 10⁻⁷ N
Explanation:
Data
q₁ = -6.25 x 10⁻⁹ C
q₂ = -6.25 x 10⁻⁹ C
d = 0.617 m
k = 9 x 10⁹ Nm²/C²
F = ?
Formula
F = k q₁q₂ /r²
-Substitution
F = (9 x 10⁹)(-6.25 x 10⁻⁹)(-6.25 x 10⁻⁹) / (0.617)²
-Simplification
F = 3.512 x 10⁻⁷ / 0.381
-Result
F = 9.227 x 10⁻⁷ N ≈ 9.23 x 10⁻⁷ N
Answer:
F_A = 8 F_B
Explanation:
The force exerted by the planet on each moon is given by the law of universal gravitation
F = 
where M is the mass of the planet, m the mass of the moon and r the distance between its centers
let's apply this equation to our case
Moon A
the distance between the planet and the moon A is r and the mass of the moon is 2m
F_A = G \frac{2m M}{r^{2} }
Moon B
F_B = G \frac{m M}{(2r)^{2} }
F_B = G \frac{m M}{4 r^{2} }
the relationship between these forces is
F_B / F_A =
= 1/8
F_A = 8 F_B
Answer:
D. I'm guessing
The gold-foil experiment showed that the atom consists of a small, massive, positively charged nucleus with the negatively charged electrons being at a great distance from the centre.