<span>The 2nd truck was overloaded with a load of 16833 kg instead of the permissible load of 8000 kg.
The key here is the conservation of momentum.
For the first truck, the momentum is
0(5100 + 4300)
The second truck has a starting momentum of
60(5100 + x)
And finally, after the collision, the momentum of the whole system is
42(5100 + 4300 + 5100 + x)
So let's set the equations for before and after the collision equal to each other.
0(5100 + 4300) + 60(5100 + x) = 42(5100 + 4300 + 5100 + x)
And solve for x, first by adding the constant terms
0(5100 + 4300) + 60(5100 + x) = 42(14500 + x)
Getting rid of the zero term
60(5100 + x) = 42(14500 + x)
Distribute the 60 and the 42.
60*5100 + 60x = 42*14500 + 42x
306000 + 60x = 609000 + 42x
Subtract 42x from both sides
306000 + 18x = 609000
Subtract 306000 from both sides
18x = 303000
And divide both sides by 18
x = 16833.33
So we have the 2nd truck with a load of 16833.33 kg, which is well over it's maximum permissible load of 8000 kg. Let's verify the results by plugging that mass into the before and after collision momentums.
60(5100 + 16833.33) = 60(21933.33) = 1316000
42(5100 + 4300 + 5100 + 16833.33) = 42(31333.33) = 1316000
They match. The 2nd truck was definitely over loaded.</span>
Answer:

Now,buyantant force

so;




Now,



And now,



Hence that,specific density of a given body is 3
please mark me as brainliest, please
Answer:
3.63 s
Explanation:
We can solve the problem by using the equivalent SUVAT equations for the angular motion.
To find the angular acceleration, we can use the following equation:

where
is the final angular speed
is the initial angular speed
is the angular distance covered
is the angular acceleration
Re-arranging the formula, we can find
:

Now we want to know the time the bit takes starting from rest to reach a speed of
. So, we can use the following equation:

where:
is the angular acceleration
is the final speed
is the initial speed
t is the time
Re-arranging the equation, we can find the time:

Answer:
The power will remain the same for a particular load as we are not changing the load. so if we increase the voltage, the current will decrease to make the net power consumed by the load same as before. If we increase the current, the voltage will decrease for making the power same. The power will only change when we changes the load.
Explanation: