Answer: D)supersaturated
Explanation: Solubility is defined as the amount of solute in grams which can dissolve in 100 g of the liquid to form a saturated solution at that particular temperature.
At
, the solubility of
is 153g/100 ml.
Thus if 180 grams is dissolved, it contains more amount of solute than it can hold at that that temperature, and thus is supersaturated solution.
A saturated solution is a solution containing the maximum concentration of a solute dissolved in the solvent. The additional solute does not dissolve in a saturated solution.
An unsaturated solution is solution in which the solute concentration is lower than its equilibrium solubility.
A supersaturated solution is one that has more solute than it can hold at a certain temperature.
We can find the force by using the following formula;
N = ma + mg
Fa = ma = 76 x 1.2 = 91.2
Fg = mg = 76 x 9.8 = 744.8
N = 91.2 + 744.8 = 836
So, the force is 836 N.
Answer:
can't see anything sorry can't help
I'm pretty sure what you are trying to ask for is radiative energy, light energy, and electronic energy.
Radiative since the microwave is releasing radiation,
Light since there is light inside the microwave,
Electronic since it is plugged in and uses electricity.
You can also use sound, but I don't think every microwave makes sound.
Answer:
4 hoop, disk, sphere
Explanation:
Because
We are given data that
Hoop, disk, sphere have Same mass and radius
So let
And Initial angular velocity, = 0
The Force on each be F
And Time = t
Also let
Radius of each = r
So let's find the inertia shall we!!
I1 = m r² /2
= 0.5 mr² the his is for dis
I2 = m r² for hoop
And
Moment of inertia of sphere wiil be
I3 = (2/5) mr²
= 0.4 mr²
So
ωf = ωi + α t
= 0 + ( τ / I ) t
= ( F r / I ) t
So we can see that
ωf is inversely proportional to moment of inertia.
And so we take the
Order of I ( least to greatest ) :
I3 (sphere) , I1 (disk) , I2 (hoop) , ,
Order of ωf: ( least to greatest)
That of omega xf is the reverse of inertial so
hoop, disk, sphere
Option - 4