Explanation:
I don't understand this question
could you please explain
Answer:
The applied torque is 3.84 N-m.
Explanation:
Given that,
Moment of inertia of the wheel is 
Initial speed of the wheel is 0 (at rest)
Final angular speed is 25 rad/s
Time, t = 13 s
The relation between moment of inertia and torque is given by :

So, the applied torque is 3.84 N-m.
3s
Explanation:
Given parameters:
Mass of car = 1000kg
Force applied = 8000N
speed = 24m/s
Unknown:
time taken for the car to stop = ?
Solution:
According to newton's second law of motion; "the force on a body is the product of its mass and acceleration".
Force = mass x acceleration
let us find the acceleration of the car;
a =
=
= 8m/s²
since the car is accelerating at a rate of 8m/s², when the brakes are applied, it will start decelerating at the constant rate, - 8m/s²
Applying the appropriate equation of motion;
V = U + at
V is the final velocity
U is the initial velocity
a is the acceleration
t is the time taken
final velocity = 0
0 = U + at
-U = at
-24 = -8t
t = 3s
learn more:
Newton's laws brainly.com/question/11411375
#learnwithBrainly
Answer:
P = I V power produced by source at voltage V thru resistance R
I = V / R current thru resistance R
P = V^2 / R
Power produced will decrease as the output resistance R increases
Check: if R increases to ∞ the power produced will go to zero
227kj Because The first thing to do here is to calculate the energy of a single photon of wavelength equal to
527 nm
, then use Avogadro's number to scale this up to the energy of a mole of such photons.