Answer:
a) v = 2,9992 10⁸ m / s
, b) Eo = 375 V / m
, B = 1.25 10⁻⁶ T,
c) λ = 3,157 10⁻⁷ m, f = 9.50 10¹⁴ Hz
, T = 1.05 10⁻¹⁵ s
, UV
Explanation:
In this problem they give us the equation of the traveling wave
E = 375 cos [1.99 10⁷ x + 5.97 10¹⁵ t]
a) what the wave velocity
all waves must meet
v = λ f
In this case, because of an electromagnetic wave, the speed must be the speed of light.
k = 2π / λ
λ = 2π / k
λ = 2π / 1.99 10⁷
λ = 3,157 10⁻⁷ m
w = 2π f
f = w / 2 π
f = 5.97 10¹⁵ / 2π
f = 9.50 10¹⁴ Hz
the wave speed is
v = 3,157 10⁻⁷ 9.50 10¹⁴
v = 2,9992 10⁸ m / s
b) The electric field is
Eo = 375 V / m
to find the magnetic field we use
E / B = c
B = E / c
B = 375 / 2,9992 10⁸
B = 1.25 10⁻⁶ T
c) The period is
T = 1 / f
T = 1 / 9.50 10¹⁴
T = 1.05 10⁻¹⁵ s
the wavelength value is
λ = 3,157 10-7 m (109 nm / 1m) = 315.7 nm
this wavelength corresponds to the ultraviolet
Parallel has more than one circuit or form of energy
series has only one form of energy circuit
Answer:
C) is zero
Explanation:
According to the law of energy conservation, the total mechanical energy of the object is conserved. A book falling a distance d would have a change in potential energy, resulting in the same change in kinetic energy. But the total mechanical energy must be the same. So there's 0 change in total energy of the system.
Image #3 good luck!!!!!!!!!!!
Answer:
The normal force will be "122.8 N".
Explanation:
The given values are:
Weight,
W = 100 N
Force,
F = 40 N
Angle,
θ = 35.0°
As we know,
⇒ 
On substituting the given values, we get
⇒ 
⇒ 
⇒ 