<span>Examples of outside forces acting on a car is gravity, wind, and other cars. Cars do not slide down hills because their weight, combined with the friction of their tires against the road, hold them in place. </span>
Change in momentum: finial momentum - initial momentum
Momentum = mass * velocity
Mass = 100g, same as 0.1kg
m(v-u) = 0.1(10-2) = 0.1(8)
The answer is 0.8Ns
Answer:
the <em>ratio F1/F2 = 1/2</em>
the <em>ratio a1/a2 = 1</em>
Explanation:
The force that both satellites experience is:
F1 = G M_e m1 / r² and
F2 = G M_e m2 / r²
where
- m1 is the mass of satellite 1
- m2 is the mass of satellite 2
- r is the orbital radius
- M_e is the mass of Earth
Therefore,
F1/F2 = [G M_e m1 / r²] / [G M_e m2 / r²]
F1/F2 = [G M_e m1 / r²] × [r² / G M_e m2]
F1/F2 = m1/m2
F1/F2 = 1000/2000
<em>F1/F2 = 1/2</em>
The other force that the two satellites experience is the centripetal force. Therefore,
F1c = m1 v² / r and
F2c = m2 v² / r
where
- m1 is the mass of satellite 1
- m2 is the mass of satellite 2
- v is the orbital velocity
- r is the orbital velocity
Thus,
a1 = v² / r ⇒ v² = r a1 and
a2 = v² / r ⇒ v² = r a2
Therefore,
F1c = m1 a1 r / r = m1 a1
F2c = m2 a2 r / r = m2 a2
In order for the satellites to stay in orbit, the gravitational force must equal the centripetal force. Thus,
F1 = F1c
G M_e m1 / r² = m1 a1
a1 = G M_e / r²
also
a2 = G M_e / r²
Thus,
a1/a2 = [G M_e / r²] / [G M_e / r²]
<em>a1/a2 = 1</em>
Answer:
c) 11.9 yr
Explanation:
The orbital period is proportional to r^(3/2) and does not depend on the satellite's mass. Any object at Jupiter position will have the same orbital period regardless of mass.
By keppler's law we know that
T^2= r^3
T= orbital time period
r= mean distance of the planet from the Sun.
clearly, The orbital period does not depend on the satellite's mass
there, the correct answer will be c= 11.9 yr.
I looked up the question and got D- a vacuum