Answer:
<em>3924 Pa</em>
<em></em>
Explanation:
Volume of cylinder = 2 L = 0.002 m^3 (1000 L = 1 m^3)
diameter of the inner cylinder = 8 cm = 0.08 m (100 cm = 1 m)
radius of the inner cylinder = diameter/2 = 0.08/2 = 0.04 m
area of the inner cylinder = 
where
= 3.142,
and r = radius = 0.04 m
area of inner cylinder = 3.142 x
= 0.005 m^2
<em>height h of the water in this cylinder = volume/area</em>
h = 0.002/0.005 = 0.4 m
<em>pressure at the bottom of the cylinder due to the height of water = pgh</em>
where
p = density of water = 1000 kg/m^3
g = acceleration due to gravity = 9.81 m/s^2
h = height of water within this cylinder = 0.4 m
pressure = 1000 x 9.81 x 0.4 = <em>3924 Pa</em>
The answer is λ₂ = 6.48 cm or 6.52 cm.
The out-of-tune guitar may have a wavelength between "6.48 cm" and "6.52 cm."
fb = |f2 − f1|
f₁ = 343/0.064
= 5276Hz
f₂ = 5276.9 Hz ± 17 Hz
f₂ = 5293.9 Hz or 5259.9 Hz
Now, calculating the possible wavelengths:
λ = 343/ 5259.9 or 343/ 5293.9
λ₂ = 6.48 cm or 6.52 cm
<h3>Why is beat frequency important?</h3>
When two waves with almost identical frequencies traveling in the same direction collide at a certain location, beats are produced. The opposing beneficial and harmful disruption causes the sound to alternatively be loud and weak whenever two sound waves with different frequencies reach your ear. This is referred to as beating.
The entire value of the frequency difference between the two waves is the beat frequency.
The following formula yields the beat frequency:
fb = |f2 − f1|
Learn more about beat frequency here:
brainly.com/question/14705053
#SPJ4
Answer:
An external force is a force that acts on an object within the system from outside the system. This type of force is different than an internal force, which acts between two objects that are both within the system. The net external force combines these two definitions; it is the total combined external force
Explanation:
ig the answer is true
Answer:
33.6 m
Explanation:
Given:
v₀ = 0 m/s
a = 47.41 m/s²
t = 1.19 s
Find: Δx
Δx = v₀ t + ½ at²
Δx = (0 m/s) (1.19 s) + ½ (47.41 m/s²) (1.19 s)²
Δx = 33.6 m