Answer:
T = 5163.89 N
Explanation:
Newton's first law:
∑F =0 Formula (1)
∑F : algebraic sum of the forces in Newton (N)
We define the x-axis in the direction parallel to the movement of the car on the ramp and the y-axis in the direction perpendicular to it.
Forces acting on the car
W: Weight of the car : In vertical direction
FN : Normal force : perpendicular to the ramp
T :Tension force: at angle of 31.0° above the surface of the ramp
Calculated of the Weight of the car (W)
W = m*g m: mass g:acceleration due to gravity
W = 1130-kg* 9.8 m/s² = 11074 N
x-y weight components
Wx = 11074 N*sin 25.0° = 4680.07 N
Wy = 11074 N*cos 25.0° = 10036.45 N
x-y Tension components
Tx = T*cos 25.0°
Ty = T*sin 25.0°
Newton's first law:
∑Fx =0 Formula (1)
Tx-Wx = 0
T*cos 25.0° - 4680.07 = 0
T*cos 25.0° = 4680.07
T = 4680.07 / cos 25.0°
T = 5163.89 N
The answer would be B. An example of this would be the Noble gasses. They include: Helium, Argon, Neon, and so on. They are all located on the very right side because they share similar chemical behaviours; they dont react very easily because they have a full valence shell.
Total Current = 2 Amps
Req total = 60 ohms
Current on EF mesh = 1/3 Amp
Current on 24 ohms resistor = 1/6 Amp
Voltage on the 40ohms resistor is lefting.
Answer:
U = (ε0AV^2) / 2d
Explanation:
Where C= capacitance of the capacitor
ε0= permittivity of free space
A= cross sectional area of plates
d= distance between the plates
V= potential difference
First, the capacitance of a capacitor is obtained by:
C = ε0A/d.
Starting at the formula , U= (CV^2)/2. Formula for energy stored in a capacitor
Substitute in for C:
U = (ε0A/d) * V^2 / 2
Hence:
U = (ε0AV^2) / 2d