The acceleration of gravity on or near the Earth's surface is 9.8 m/s² downward.
Is that right ? I don't hear any objection, so I'll assume that it is.
That means that during every second that gravity is the only force on an object,
the object either gains 9.8m/s of downward speed, or it loses 9.8m/s of upward
speed. (The same thing.)
If the rock starts out going up at 14.2 m/s, and loses 9.8 m/s of upward speed
every second, it runs out of upward gas in (14.2/9.8) = <em>1.449 seconds</em> (rounded)
At that point, since it has no more upward speed, it can't go any higher. Right ?
(crickets . . .)
Answer:
the answer is tropical rainfores
Answer:
T = 4.905[N]
Explanation:
In order to solve this problem we must perform a sum of forces on the vertical axis.
∑Fy = 0
We have two forces acting only, the weight of the body down and the tension force T up, as the body does not move we can say that it is system is in static equilibrium, therefore the sum of forces is equal to zero.
![T-m*g=0\\T=0.5*9.81\\T=4.905[N]](https://tex.z-dn.net/?f=T-m%2Ag%3D0%5C%5CT%3D0.5%2A9.81%5C%5CT%3D4.905%5BN%5D)
Answer:
C. Blood
Explanation:
All the other ones are removed from the body normally.
Answer:
The value is 
Explanation:
From the question we are told that
The magnitude of the horizontal force is 
The mass of the crate is 
The acceleration of the crate is 
Generally the net force acting on the crate is mathematically represented as

Here
is force of kinetic friction (in N) acting on the crate
So

=> 