Elements with atomic numbers from 58 through 71 are part of the
<span>
lanthanide</span> series <span />
Answer:
b. 0.034
Explanation:
The heat transfer coefficient of a material (U-value) is equal to the reciprocal of its R-value, therefore:

where
R is the R-value of the material
For the insulator in this problem,
R = 29
Substituting into the equation, we find the heat transfer coefficient:

26.2005 m/s will be the velocity of the apple right when it hits the ground and the initial velocity would be 25.8235 m/s
so Vf=26.2005
and Vi=25.8235
the velocity difference is due to the apple having an initial height of 1 meter
The complete question is;
James Joule (after whom the unit of energy is named) claimed that the water at the bottom of Niagara Falls should be warmer than the water at the top, 51 m above the bottom. He reasoned that the falling water would transform its gravitational potential energy at the top into thermal energy at the bottom, where turbulence brings the water almost to a halt. If this transformation is the only process occurring, how much warmer will the water at the bottom be?
Answer:
Water becomes warmer by a temperature of ΔT = 0.119 K
Explanation:
If we assume that gravitational kinetic energy will be converyrf into thermal enrgy, we will have;
Q = U
So, m•c_w•ΔT = mgh
Where;
c_w is specific heat capacity of water with a value of 4184 J/Kg.K
ΔT is change in temperature indicating how warmer the water will be. Thus making ΔT the subject, we have;
ΔT = gh/c_w
So, ΔT = 9.8 x 51/4184 = 0.119 K
Given:
f = 1160 kHz = 1160 x 10³ Hz
The velocity is c = 3 x 10⁸ m/s, the velocity of light (approximmately).
Calculate the wavelength, λ.
c = fλ
λ = c/f = (3 x 10⁸ m/s)/(1160 x 10³ 1/s) = 258.62 m
Answer: 258.6 m