Answer:
5.62 m/s
Explanation:
Newton's law of motion can be used to determine the maximum speed of the elevator. In the question, we are given:
Force exerted by the elevator (R) = 1.7 times the weight of the passenger (m*g)
Thus: R = 1.7*m*g
Distance (s) = 2.3 m
Newton's second law of motion: R - m*g = m*a
1.7*m*g - m*g = m*a
a = 0.7*m*g/m = 0.7*g = 0.7*9.8 = 6.86 m/s²
To determine the maximum speed:



Therefore, the elevator maximum speed is equivalent to 5.62 m/s.
Answer:
Power, P = 924.15 watts
Explanation:
Given that,
Length of the ramp, l = 12 m
Mass of the person, m = 55.8 kg
Angle between the inclined plane and the horizontal, 
Time, t = 3 s
Let h is the height of the hill from the horizontal,


h = 5.07 m
Let P is the power output necessary for a person to run up long hill side as :



P = 924.15 watts
So, the minimum average power output necessary for a person to run up is 924.15 watts. Hence, this is the required solution.
<h2>
Hello there! :)</h2>
It's a pleasure to be helping you today with your<u> physics question!</u>
Answer:

Explanation:
We want to find the initial speed of the ball.
To do this, we have to apply the formula for the time of flight of a projectile:

where θ = angle of flight
g = acceleration due to gravity
v0 = initial speed
Therefore, substituting the given values into the formula, we have that:

⇒ 2 ×
×0.8910= 9.8 × 4.2
⇒

That is the initial speed of the ball.
<em />
<em>I hope this helps you!</em>
<em>Good Luck with your Assignment!</em>
Answer:
Transparent or Translucent
Explanation:
They are the element symbols. Too many to list here, look up a periodic table.