Answer:
0.75 Amps
Explanation:
I had this question and this was right
Answer:
The nodes and anti nodes would reverse roles.
Explanation:
I believe it has to do with the path differences. If waves are in phase, then the path differences are such that the waves reach the screen with crests superimposing crests and troughs superimposing troughs. This happens when the periods of each wave are equal or the paths themselves differ by a whole number multiple of the wavelength (λ, 2λ, 3λ, ...).
Now make these waves out of phase. Then half of the waves will travel half a wavelength farther than the rest. So the path difference will be 0.5λ, 1.5λ, 2.5λ, ....
The momentum of the second ball was 15 kg.m/s.
<h3>What is inelastic collision?</h3>
In which collision some amount of kinetic energy of the system is lost that called inelastic collision. In purely inelastic collision, two bodies stick together. But principle of conservation of linear momentum is obeyed.
In the given question,
Two balls collide and after collision, the final momentum of the system = 18 kg.m/s.
Initial velocity of 1st ball of mass 3 kg is 1 m/s.
So, Initial momentum of first ball = mass × velocity = (3 kg) × (1 m/s) = 3 kg.m/s.
According to Principle of conservation of linear momentum for this inelastic collision,
Initial momentum of first ball + initial momentum of second ball = final momentum of the system
⇒ initial momentum of second ball = final momentum of the system - Initial momentum of first ball
= 18 kg.m/s - 3 kg.m/s.
= 15 kg.m/s.
Hence, initial momentum of second ball = 15 kg.m/s.
Learn more about momentum here:
brainly.com/question/24030570
#SPJ2
Doing a force balance on the car:
ma = Fr
ma = μmg
a = μg
a = 0.3(9.81)
a = 29.43 m/s2
Using the formula:
2ax = v2
2(29.43)(34) = v2
v = 44.74 m/s = 161.05 km/h
The car was going 44.74 m/s or 161.05 kph when the brakes were applied.