The density would decrease because the mass of an object deals with the amount of atoms in the object and since none of the object was reduced "a" wouldn't be the answer. Depending on the amount and period of time that the heat is applied the liquid could change into a gas so "d" wouldn't be correct. Density is the mass÷ volume, and when you add heat to an object it could take up different amounts of space because of its particles gaining energy and spreading apart. So the density would decrease because of the volume increasing. So I believe that "c" is the answer.
Answer:
B. There are no forces acting on the ball.
Explanation:
There are no forces acting on the ball.
<span>D. Pressure increases with increasing depth.
This occurs because there is more weight above you to increase the pressure.
</span>
Answer:
v_f = 24.3 m / s
Explanation:
A) In this exercise there is no friction so energy is conserved.
Starting point. On the roof of the building
Em₀ = K + U = ½ m v₀² + m g y₀
Final point. On the floor
Em_f = K = ½ m v_f²
Emo = Em_g
½ m v₀² + m g y₀ = ½ m v_f²
v_f² = v₀² + 2 g y₀
let's calculate
v_f = √(10² + 2 9.8 25)
v_f = 24.3 m / s
the force that the planet exerts on the moon is equal to the force that the moon exerts on the planet
Explanation:
In this problem we are analzying the gravitational force acting between a planet and its moon.
The magnitude of the gravitational attraction between two objects is given by
where
:
is the gravitational constant
m1, m2 are the masses of the two objects
r is the separation between them
In this problem, we are considering a planet and its moon. According to Newton's third law of motion,
"When an object A exerts a force (action force) on an object B, then object B exerts an equal and opposite force (reaction force) on object A"
If we apply this law to this situation, this means that the force that the planet exerts on the moon is equal to the force that the moon exerts on the planet.
Learn more about gravitational force:
brainly.com/question/1724648
brainly.com/question/12785992
#LearnwithBrainly