Fusion power is the power generated by nuclear fusion processes. In fusion reactions, two light atomic nuclei fuse together to form a heavier nucleus. In doing so, they release a comparatively large amount of energy that arises from the binding energy, creating an increase in temperature of the reactants.
I guess if you mix them together, the chalk would get less harder.
In chemistry, if you want to express the amount of a substance out of the total amount, you express it in concentration. There are numerous units of measurement: molarity, molality, normality, mass percentages, volume percentage, or a mix of both. For this problem, the unit used for concentration is in mass percentages. The formula would be
Percentage Concentration = [(Actual Amount of Substance)/(Total amount of all substances)] * 100
Since we are given with the total mass of all the substances in the ocean and the percentage concentration, the only missing information is the actual amount of Na+ in the ocean. Substituting the values:
1.076 = (Amount of Na+ /1.8×10²¹ kg)*100
Amount of Na+ = 1.9368×10¹⁹ kg
Answer: 65.38g of Ca(OH)2 is needed
Explanation:
From The equation of reaction
2 HCl + Ca ( OH ) 2 ⟶ CaCl 2 + 2 H 2 O
NB: Molar mass of HCl= 1+35.5=36.5
Ca(OH)2= 74
From The stoichiometric equation
2mol of HCl(36.5×2=73) require 1mol of Ca(OH)2 (74g)
Hence 64.5g of HCl will require 64.5×74/73= 65.38g of Ca(OH)2
We have to get the relationship between metallic character and atomic radius.
Metallic character increases with increase in atomic radius and decrease with decrease of atomic radius.
If electrons from outermost shell of an element can be removed easily, that atom can be considered to have more metallic character.
With increase in atomic radius, nuclear force of attraction towards outermost shell electron decreases which facilitates the release of electron.
With decrease in atomic radius, nuclear force of attraction towards outermost shell electrons increases, so electrons are hold tightly to nucleus. Hence, removal of electron from outermost shell becomes difficult making the atom less metallic in nature.