Too freaking many... or maybe not many at all
Answer : The final concentration of
is, 2.9 M
Explanation :
Expression for rate law for first order kinetics is given by:

where,
k = rate constant = 
t = time passed by the sample = 3.5 min
a = initial concentration of the reactant = 3.0 M
a - x = concentration left after decay process = ?
Now put all the given values in above equation, we get


Thus, the final concentration of
is, 2.9 M
Answer:
1.4 × 10² mL
Explanation:
There is some info missing. I looked at the question online.
<em>The air in a cylinder with a piston has a volume of 215 mL and a pressure of 625 mmHg. If the pressure inside the cylinder increases to 1.3 atm, what is the final volume, in milliliters, of the cylinder?</em>
Step 1: Given data
- Initial volume (V₁): 215 mL
- Initial pressure (P₁): 625 mmHg
- Final pressure (P₂): 1.3 atm
Step 2: Convert 625 mmHg to atm
We will use the conversion factor 1 atm = 760 mmHg.
625 mmHg × 1 atm/760 mmHg = 0.822 atm
Step 3: Calculate the final volume of the air
Assuming constant temperature and ideal behavior, we can calculate the final volume of the air using Boyle's law.
P₁ × V₁ = P₂ × V₂
V₂ = P₁ × V₁ / P₂
V₂ = 0.822 atm × 215 mL / 1.3 atm = 1.4 × 10² mL
The best answer to your question would be B:those who could not be broken down by physical means.
Drugs interfere with the way neurons send, receive, and process signals via neurotransmitters. Some drugs, such as marijuana and heroin, can activate neurons because their chemical structure mimics that of a natural neurotransmitter in the body. This allows the drugs to attach onto and activate the neurons. Although these drugs mimic the brain’s own chemicals, they don’t activate neurons in the same way as a natural neurotransmitter, and they lead to abnormal messages being sent through the network.
Other drugs, such as amphetamine or cocaine, can cause the neurons to release abnormally large amounts of natural neurotransmitters or prevent the normal recycling of these brain chemicals by interfering with transporters. This too amplifies or disrupts the normal communication between neurons.