Answer:
The question is incorrect and incomplete. Here's the correct question:
It is difficult to extinguish a fire on a crude oil tanker, because each liter of crude oil releases 2.80 × 10 7 J of energy when burned. To illustrate this difficulty,a) calculate the number of liters of water that must be expended to absorb the energy released by burning 1.00 L of crude oil, if the water has its temperature raised from 23.5 °C to 100 °C , it boils, and the resulting steam is raised to 315 °C. b)Discuss additional complications caused by the fact that crude oil has less density than water.
Explanation:
Q= mc ΔT
Q= heat energy
m is mass
ΔT is change in temperature and c is specific heat capacity
calculating heat for latent heat of vaporisation
Q= ml where l is latent heat of vaporisation
a) Total heat energy used= heat required to raise temperature from 23.5 °C to 100 °C, heat required to boil water and heat required to further raise temperature from 100 °C to 315°C
Q = mc ΔT₁ + mL + mc ΔT₂
Q = m(c ΔT₁ + L + c ΔT₂)
m= Q÷(c ΔT₁ + L + c ΔT₂)
Q= 2.8 X 10⁷ J
c=4186J/kg°C
L=2256 x 10³J/kg
ΔT₁=76.5°C(100°C-23.5°C)
ΔT₂= 215°C(315°C-100°C)
(c ΔT₁ + L + c ΔT₂)= 4186J/kg°C *76.5°C + 2256 x 10³J/kg + 4186J/kg°C*215°C =3476219J/Kg
m= 2.8 x 10⁷J ÷3476219J/Kg
m =80.54 Kg
volume = mass÷ density
=80.54kg ÷ 10³kg/m³( density of water)
=0.0854m³
0.001m³ = 1 lL0.08054m³= 0.08054m³ /0.001m³= 80.54L
VOLUME is 80.54litres
b) since the density of crude is less than the density of water,and 80L of additional water is added, it'll make the crude to float on water thus inhibiting the extinguishing process
Answer:
C. Splitting the atom
Explanation:
splitting the atom involves fission
<span>"Alloy additions also suppress (lower) the melting range. Pure iron (Fe) has a fixed melting point of 1535°C, chromium (Cr) 1890°C and nickel (Ni) 1453°C compared to a range of 1400-1450 °C for type 304 stainless steel."</span>
Answer:
Explanation:
Your strategy here will be to
use the chemical formula of carbon dioxide to find the number of molecules of
CO
2
that would contain that many atoms of oxygen
use Avogadro's constant to convert the number of molecules to moles of carbon dioxide
use the molar mass of carbon dioxide to convert the moles to grams
So, you know that one molecule of carbon dioxide contains
one atom of carbon,
1
×
C
two atoms of oxygen,
2
×
O
This means that the given number of atoms of oxygen would correspond to
4.8
⋅
10
22
atoms O
⋅
1 molecule CO
2
2
atoms O
=
2.4
⋅
10
22
molecules CO
2
Now, one mole of any molecular substance contains exactly
6.022
⋅
10
22
molecules of that substance -- this is known as Avogadro's constant.
In your case, the sample of carbon dioxide molecules contains
2.4
⋅
10
22
molecules CO
2
⋅
1 mole CO
2
6.022
⋅
10
23
molecules CO
2
=
0.03985 moles CO
2
Finally, carbon dioxide has a molar mass of
44.01 g mol
−
1
, which means that your sample will have a mass of
0.03985
moles CO
2
⋅
44.01 g
1
mole CO
2
=
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
∣
∣
a
a
1.8 g
a
a
∣
∣
−−−−−−−−−
The answer is rounded to two sig figs, the number of sig figs you have for the number of atoms of oxygen present in the sample.
___
Regarding the bonds in FesO₄, Fe and S have an ionic bond, while S and O have covalent bonds.
Elements form bonds to increase their stability. The main types of bonds are:
- Metallic bonds: they are formed between metals and the electrons are in a delocalized cloud.
- Ionic bonds: they are formed between metals (lose electrons) and nonmetals (gain electrons)
- Covalent bonds: they are formed between nonmetals, which share electrons.
Regarding the bonds in FesO₄:
- Fe is a metal and S a nonmetal, thus they will form ionic bonds.
- S and O are both nonmetals, thus they will form covalent bonds.
Regarding the bonds in FesO₄, Fe and S have an ionic bond, while S and O have covalent bonds.
Learn more: brainly.com/question/23882847