Answer:
15.35 g of (NH₄)₃PO₄
Explanation:
First we need to look at the chemical reaction:
3 NH₃ + H₃PO₄ → (NH₄)₃PO₄
Now we calculate the number of moles of ammonia (NH₃):
number of moles = mass / molecular wight
number of moles = 5.24 / 17 = 0.308 moles of NH₃
Now from the chemical reaction we devise the following reasoning:
if 3 moles of NH₃ are produce 1 mole of (NH₄)₃PO₄
then 0.308 moles of NH₃ are produce X moles of (NH₄)₃PO₄
X = (0.308 × 1) / 3 = 0.103 moles of (NH₄)₃PO₄
mass = number of moles × molecular wight
mass = 0.103 × 149 = 15.35 g of (NH₄)₃PO₄
Answer:
Endothermic reaction chemical equation
Reactnt A + Reactant B + Heat (energy) ⇒ Products
Exothermic reaction chemical equation
Reactnt A + Reactant B ⇒ Products + Heat (energy)
Explanation:
Endothermic Reaction
An endothermic reaction is a reaction that reaction that requires heat before it would take place resulting in the absorption of heat from the surrounding that can be sensed by the coolness of the reacting system
An example of an endothermic reaction is a chemical cold pack that becomes cold when the chemical and water inside it reacts
Exothermic Reaction
An exothermic reaction is one that rekeases energy to the surroundings when it takes place. This is as a result of the fact that the combined heat energy of the reactants is more than the chemical heat energy of the products. An example of an exothermic reaction is a burning candle
Wow thats pretty hard its asking how many is in each of those
KI-starch paper allows the detection of strong oxidizers such as nitrite. It is used here to control diazotization of 4-nitroaniline. Nitrite oxidizes potassium iodide in order to form elemental iodine which reacts with starch to a blue-violet complex. With KI-starch paper, enough sodium nitrite is added to produce nitrous acid, which <span>then will react with 4-nitroaniline to form a diazonium salt.</span>