A material that allows heat/electricity to transfer is called a conductor.
Answer:
1.79 mol.
Explanation:
- For the balanced reaction:
<em>2NaCl + F₂ → 2NaF + Cl₂.
</em>
It is clear that 2 mol of NaCl react with 1 mol of F₂ to produce 2 mol of NaF and 1 mol of Cl₂.
- Firstly, we can get the no. of moles of F₂ gas using the general law of ideal gas: <em>PV = nRT.</em>
where, P is the pressure of the gas in atm (P = 1.2 atm).
V is the volume of the gas in L (V = 18.3 L).
n is the no. of moles of the gas in mol (n = ??? mol).
R is the general gas constant (R = 0.0821 L.atm/mol.K),
T is the temperature of the gas in K (299 K).
∴ no. of moles of F₂ (n) = PV/RT = (1.2 atm)(18.3 L)/(0.0821 L.atm/mol.K)(299 K) = 0.895 mol.
- Now, we can find the no. of moles of NaCl is needed to react with 0.895 mol of F₂:
<em><u>Using cross multiplication:</u></em>
2 mol of NaCl is needed to react with → 1 mol of F₂, from stichiometry.
??? mol of NaCl is needed to react with → 0.895 mol of F₂.
∴ The no. of moles of NaCl needed = (2 mol)(0.895 mol)/(1 mol) = 1.79 mol.
Answer: Thus 0.724 mol of
are needed to obtain 18.6 g of 
Explanation:
To calculate the moles :

According to stoichiometry :
2 moles of
are produced by = 1 mole of 
Thus 1.09 moles of
will be produced by =
of 
But as yield of reaction is 75.6 %, the amount of
needed is =
Thus 0.724 mol of
are needed to obtain 18.6 g of 
Explanation:
Bernoulli equation for the flow between bottom of the tank and pipe exit point is as follows.
= 
![\frac{(100 \times 144)}{62.43} + 0 + h[tex] = [tex]\frac{(50 \times 144)}{(62.43)} + \frac{(70)^{2}}{2(32.2)} + 0 + 40 + 60](https://tex.z-dn.net/?f=%5Cfrac%7B%28100%20%5Ctimes%20144%29%7D%7B62.43%7D%20%2B%200%20%2B%20h%5Btex%5D%20%3D%20%5Btex%5D%5Cfrac%7B%2850%20%5Ctimes%20144%29%7D%7B%2862.43%29%7D%20%2B%20%5Cfrac%7B%2870%29%5E%7B2%7D%7D%7B2%2832.2%29%7D%20%2B%200%20%2B%2040%20%2B%2060)
h = 
= 60.76 ft
Hence, formula to calculate theoretical power produced by the turbine is as follows.
P = mgh
= 
= 6076 lb.ft/s
= 11.047 hp
Efficiency of the turbine will be as follows.
=
× 100%
=
= 52.684%
Thus, we can conclude that the efficiency of the turbine is 52.684%.