<em>Thermal energy</em> is the sum of the kinetic and potential energies of all the particles in an object.
Assume that you have 250 gL of water and 1 kg of water at the same temperature.
Then, each water molecule has the same kinetic energy.
The larger sample contains four times as many molecules, so it contains four times as much thermal energy.
Thus, thermal energy is directly proportional to mass.
In symbols, <em>KE </em>∝ <em>m</em> or <em>KE = km</em>.
The graph of a direct proportion is a <em>straight line passing trough the origin</em>.
It should look something like the graph below.
Answer : The correct option is, (c) pyramidal
Explanation :
As we are given that a molecule in which the central atom forms three single bonds and has one lone pair that means the central metal atom has 3 bond pairs and 1 lone pair of electrons.
There are total 4 electron pairs. So, the hybridization will be
and the electronic geometry of the molecule will be tetrahedral.
But as there are three atoms or bonds around the central atom and the fourth position occupied by lone pair of electrons. The repulsion between lone and bond pair of electrons is more and hence the molecular geometry will be pyramidal.
Hence, correct option is, (c) pyramidal
Answer:
Hydrosulfuric acid will act as limiting reactant.
Explanation:
Given data:
Mass of iron(III) chloride = 3243.0 g
Mass of hydrosulfuric acid = 511.8 g
Limiting reactant = ?
Solution:
Chemical equation:
2FeCl₃ + 3H₂S → Fe₂S₃ + 6HCl
Number of moles of iron(III) chloride:
Number of moles = mass/molar mass
Number of moles = 3243.0 g/ 162.2 g/mol
Number of moles = 20 mol
Number of moles of hydrosulfuric acid:
Number of moles = mass/molar mass
Number of moles = 511.8 g/ 34.1 g/mol
Number of moles = 15 mol
Now we will compare the moles of both reactant with products
FeCl₃ : Fe₂S₃
2 : 1
20 : 1/2 ×20 = 10
FeCl₃ : HCl
2 : 6
20 : 6/2 ×20 = 60
H₂S : Fe₂S₃
3 : 1
15 : 1/3 ×15 = 5
H₂S : HCl
3 : 6
15 : 6/3 ×15 = 30
Hydrosulfuric acid producing less number of moles of product thus, it will act as limiting reactant.
here it is! mL to Liters to moles to molecules