Answer:
The equilbrium constant is 179.6
Explanation:
To solve this question we can use the equation:
ΔG = -RTlnK
<em>Where ΔG is Gibbs free energy = 12.86kJ/mol</em>
<em>R is gas constant = 8.314x10⁻³kJ/molK</em>
<em>T is absolute temperature = 298K</em>
<em>And K is equilibrium constant.</em>
Replacing:
12.86kJ/mol = -8.314x10⁻³kJ/molK*298K lnK
5.19 = lnK
e^5.19 = K
179.6 = K
<h3>The equilbrium constant is 179.6</h3>
Answer:
Ionic bonds usually occur between metal and nonmetal ions. For example, sodium (Na), a metal, and chloride (Cl), a nonmetal, form an ionic bond to make NaCl.
Explanation:
Compaction and cementation
Answer:
λ = 0.45×10⁻⁶ m
Explanation:
Given data:
Wavelength of blue light = ?
Frequency of blue light = 6.69×10¹⁴ s⁻¹
Solution:
Formula;
Speed of wave = wavelength × frequency
Speed of wave = 3.00×10⁸ m/s
by putting vales,
3.00×10⁸ m/s = λ × 6.69×10¹⁴ s⁻¹
λ = 3.00×10⁸ m/s / 6.69×10¹⁴ s⁻¹
λ = 0.45×10⁻⁶ m
Answer:
1.403x10²⁴ molecules
Explanation:
In order to calculate how many molecules of CO₂ are there in 102.5 g of the compound, we first<u> convert grams to moles</u> using its <em>molar mass</em>:
- 102.5 g ÷ 44 g/mol = 2.330 mol CO₂
Now we <u>convert moles into molecules </u>using <em>Avogadro's number</em>:
- 2.330 mol * 6.023x10²³ molecules/mol = 1.403x10²⁴ molecules