False because particles stop moving or study slow down.
The answer is false because it goes in a full 360 degree circle
Answer:
0.1988 J/g°C
Explanation:
-Qmetal = Qwater
Q = mc∆T
Where;
Q = amount of heat
m = mass of substance
c = specific heat of substance
∆T = change in temperature
Hence;
-{mc∆T} of metal = {mc∆T} of water
From the information provided in this question, For water; m= 22.0g, ∆T = (24°C-19°C), c = 4.18J/g°C.
For metal; m= 34.0g, ∆T = (24°C-92°C), c = ?
Note that, the final temperature of water and the metal = 24°C
-{34 × c × (24°C-92°C)} = 22 × 4.18 × (24°C-19°C)
-{34 × c × (-68°C)} = 459.8
-{34 × c × -68} = 459.8
-{-2312c} = 459.8
+2312c = 459.8
c = 459.8/2312
c = 0.1988
The specific heat capacity of the metal is 0.1988 J/g°C
According to the reaction equation:
CH3COO- + H+ → CH3COOH
initial 0.25 0.15
change - 0.025 + 0.025
Equ (0.25-0.025) (0.15 + 0.025)
first, we have to get moles acetate and moles acetic acid:
moles of acetate = 0.25 - 0.025 = 0.225 moles
∴ [CH3COO-] = 0.225 mol / 1 L = 0.225 M
moles of acetic acid = 0.15 + 0.025 = 0.175 moles
∴ [ CH3COOH] = 0.175 mol / 1L = 0.175 M
Pka = -㏒ Ka
= -㏒ 1.8 x 10^-5
= 4.74
from H-H equation we can get the PH value:
PH = Pka + ㏒ [acetate / acetic acid]
PH = 4.74 + ㏒[0.225/0.175]
∴ PH = 4.8