Answer:
9.8 × 10²⁴ molecules H₂O
General Formulas and Concepts:
<u>Atomic Structure</u>
- Reading a Periodic Table
- Moles
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<u>Organic</u>
<u>Stoichiometry</u>
- Analyzing reaction rxn
- Using Dimensional Analysis
Explanation:
<u>Step 1: Define</u>
[RxN - Unbalanced] CH₄ + O₂ → CO₂ + H₂O
[RxN - Balanced] CH₄ + 2O₂ → CO₂ + 2H₂O
[Given] 130 g CH₄
<u>Step 2: Identify Conversions</u>
Avogadro's Number
[RxN] 1 mol CH₄ → 2 mol H₂O
[PT] Molar Mass of C: 12.01 g/mol
[PT] Molar Mass of H: 1.01 g/mol
Molar Mass of CH₄: 12.01 + 4(1.01) = 16.05 g/mol
<u>Step 3: Stoichiometry</u>
- [DA] Set up conversion:
- [DA] Divide/Multiply [Cancel out units]:
<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 2 sig figs.</em>
9.75526 × 10²⁴ molecules H₂O ≈ 9.8 × 10²⁴ molecules H₂O
Answer:
Grams of mercury= 0.06 g of Hg
Note: The question is incomplete. The complete question is as follows:
A compact fluorescent light bulb contains 4 mg of mercury. How many grams of mercury would be contained in 15 compact fluorescent light bulbs?
Explanation:
Since one fluorescent light bulb contains 4 mg of mercury,
15 such bulbs will contain 15 * 4 mg of mercury = 60 mg
1 mg = 0.001 g
Therefore, 60 mg = 0.001 g * 60 = 0.06 g of mercury.
Compact fluorescent lightbulbs (CFLs) are tubes containing mercury and noble gases. When electricity is passed through the bulb, electron-streams flow from a tungsten-coated coil. They collide with mercury atoms, exciting their electrons and creating flashes of ultraviolet light. A phosphor coating on the inside of the tube absorbs this UV light flashes and re-emits it as visible light. The amount of mercury in a fluorescent lamp varies from 3 to 46 mg, depending on lamp size and age.
Answer:
The correct answer is option a.
Explanation:
When aluminum hydroxide reacts with of nitrous acid it gives of aluminum nitrite and of water.
According to above reaction ,when 1 mole of aluminum hydroxide reacts with 3 moles of nitrous acid it gives 1 mole of aluminum nitrite and 3 moles of water.
Hence, the correct answer is option a.
Answer:
moles of glucose
<u>2.3166 moles of glucose</u>
<u></u>
Explanation:
The balance reaction for the formation of glucose is :
here , CO2 = carbon dioxide
H2O = water
C6H12O6 = glucose
O2 = Oxygen
According to this equation :
6 mole of CO2 = 6 mole of H2O = 1 mole of C6H12O6 = 6 mole of O2
We are asked to calculate the mole of Glucose from carbon dioxide.
So,
6 mole of CO2 produce = 1 mole of C6H12O6
1 mole of CO2 will produce =
moles of glucose
13.9 moles of CO2 will produce :
=2.3166 moles of glucose
Note : first , Always calculate for one mole (By dividing)
. After this , multiply the answer with the moles given.
Always write the substance whose amount is asked(glucose) to the right hand side
Option C but i am not sure