The maximum value of the objective function is 26 and the minimum is -10
<h3>How to determine the maximum and the minimum values?</h3>
The objective function is given as:
z=−3x+5y
The constraints are
x+y≥−2
3x−y≤2
x−y≥−4
Start by plotting the constraints on a graph (see attachment)
From the attached graph, the vertices of the feasible region are
(3, 7), (0, -2), (-3, 1)
Substitute these values in the objective function
So, we have
z= −3 * 3 + 5 * 7 = 26
z= −3 * 0 + 5 * -2 = -10
z= −3 * -3 + 5 * 1 =14
Using the above values, we have:
The maximum value of the objective function is 26 and the minimum is -10
Read more about linear programming at:
brainly.com/question/15417573
#SPJ1
What’s standard form again? I forgot
The standard form is:

Degree = 5, leading coefficient=4
The 5th degree polynomial is:
Quintic function
it is a trinomial
<u>What is standard form of a polynomial?</u>
When expressing a polynomial in its standard form, the greatest degree of terms are written first, followed by the next degree, and so on.
So, standard form is:

To find the degree of the polynomial, add up the exponents of each term and select the highest sum ( if there are more than 1 variable in single term) or highest power of variable
Degree = 5
In a polynomial, the leading term is the term with the highest power of x.
So, leading coefficient=4
The 5th degree polynomial is:
Quintic function
It has 3 terms. so, it is a trinomial
To learn more about the standard form of a polynomial from the given link
brainly.com/question/26552651
#SPJ1
Answer:

Step-by-step explanation:
Hi there!
Equation of a circle:
where the circle is centered at (h,k) and the radius is r
<u>1) Plug in the given center (7,0)</u>

<u>2) Plug in the radius (1)</u>

I hope this helps!