Shred red cabbage ~ (3/4 of a very small head)
Put the cabbage pieces in a small container ~ ( you can use a Pyrex-4-cup measure, a bowl or even a plastic zipper bag)
Cover the cabbage with very hot water. Let it sleep until the water has cooled. (somewhere between lukewarm and room-temperature)
The purple liquid you've made is your indicator.
Pour it into a container and compost the cabbage.
Now look for substances that may be acids or bases.
Liquids are good, like fruits.
You can also use solids around for baking are good too. (such as baking soda, salt, sugar, cream of tartar...)
Get containers for mixing (such as tea cups, because they are small, shallow and white inside)
Pour the indicator into the tea cups and add an acid or base.
Lemon juice, rice wine vinegar, and apple cider vinegar, turn the cabbage-water indicator into a pink.
Orange juice or fresh oranges (same thing) turn the cabbage-water indicator into an orangish-pinkish color.
Baking soda turns the cabbage-water indicator blue.
Milk (non-fat) turns the cabbage-water indicator turn opaque and milky, yet purple.
An egg white (which won't get into the solution immediately until after a lot of stirring) turns the cabbage-water indicator blue.
Hint:
Bases mostly turn the indicator towards blue-ish colors such as purple, light blue, dark blue, opaque blue...
Acids mostly turn the indicator towards pink-ish colours such as orange-ish pink, floral pink...
(You'll have to keep on testing the cabbage-water indicator in after a day or two to see if the indicator quality persists or degrades.
Answer:
V₂ = 1070 mL or 1.07 L
Solution:
Data Given;
P₁ = 1170 mmHg
V₁ = 915 mL
T₁ = 24 °C + 273 K = 297 K
P₂ = 842 mmHg
V₂ = ?
T₂ = - 23 °C + 273 K = 250 K
According to Ideal gas equation,
P₁ V₁ / T₁ = P₂ V₂ / T₂
Solving for V₂,
V₂ = P₁ V₁ T₂ / P₂ T₁
Putting Values,
V₂ = (1170 mmHg × 915 mL × 250 K) ÷ (842 mmHg × 297 K)
V₂ = 1070 mL or 1.07 L
(E) ionic aluminum fluoride (AlF3)
The equilibrium for the dissolution of the weak base is ;(CH3)2NH(aq) + H2O(l) ⇄ (CH3)2NH3^+(aq) + OH^-(aq)
<h3>What is a weak base?</h3>
A weak base is one that does not ionize completely in solution. As such, a weak base will have a very low base dissociation constant Kb reflecting its minimal dissociation in solution.
The question is incomplete hence we are are unable to work out the equilibrium but in solution it will look like this;
(CH3)2NH(aq) + H2O(l) ⇄ (CH3)2NH3^+(aq) + OH^-(aq)
Learn more about weak base: brainly.com/question/4131966
Answer:
1s², 2s², 2p³
Explanation:
The atomic number of Nitrogen is seven. So it contains seven protons and seven electrons in neutral form. Also, the electronic configuration cited above contains seven electrons among which two electrons are present in first shell and five electrons are present in valence shell respectively.