Answer:
<em>When salt is dissolved in water</em>, many physical properties change, among them the so called colligative properties:
- The vapor pressure of water decreases,
- The boiling point increases,
- The freezing point decreases, and
- Osmotic pressure appears.
Explanation:
Colligative properties are the physical properties of the solvents whose change is determined by the number of particles (moles or ions) of the solute added.
The colligative properties are: vapor pressure, boiling point, freezing point, and osmotic pressure.
<u>Vapor pressure</u>:
The vapor pressure is the pressure exerted by the vapor of a lquid over its surface, in a closed vessel.
The vapor pressure increases when a solute is added, because the presence of the solute causes less solvent molecules to be near the surface ready to escape to the vapor phase, which means that the vapor pressure is lower.
<u>Boiling point</u>:
The boiling point is the temperature at which the vapor pressure of the liquid equals the atmospheric pressure. Since we have seen that the vapor pressure of water decreases when a solute occupies part of the surface, now more temperature will be required for the water molecules reach the atmospheric pressure. So, the boiling point increases when salt is dissolved in water.
<u>Freezing point</u>:
The freezing point is the temperarute at which the vapor pressure of the liquid and the solid are equal. Since, the vapor pressure of water with salt is lower than that of the pure water, the vapor pressure of the liquid and solid with salt will be equal at a lower temperature. Hence, the freezing point is lower (decreases).
<u>Osmotic pressure</u>:
Osmotic pressure is the additional pressure that must be exerted over a solution to make that the vapor pressure of the solvent in the solution equals the vapor pressure of the pure solvent. This additional pressure is proportional to the concentration of the solute: the higher the salt concentration the higher the osmotic pressure.
Answer:
0.184 atm
Explanation:
The ideal gas equation is:
PV = nRT
Where<em> P</em> is the pressure, <em>V</em> is the volume, <em>n</em> is the number of moles, <em>R</em> the constant of the gases, and <em>T</em> the temperature.
So, the sample of N₂O₃ will only have its temperature doubled, with the same volume and the same number of moles. Temperature and pressure are directly related, so if one increases the other also increases, then the pressure must double to 0.092 atm.
The decomposition occurs:
N₂O₃(g) ⇄ NO₂(g) + NO(g)
So, 1 mol of N₂O₃ will produce 2 moles of the products (1 of each), the <em>n </em>will double. The volume and the temperature are now constants, and the pressure is directly proportional to the number of moles, so the pressure will double to 0.184 atm.
Answer:
Image result for What evidence in Side View lets you know that upwelling is happening in these locations?
Winds blowing across the ocean surface often push water away from an area. When this occurs, water rises up from beneath the surface to replace the diverging surface water. This process is known as upwelling.
Explanation:
The answer is: Cl2.
Chlorine is diatomic molecule made of two chlorine atoms.
Diatomic molecules are molecules made of two atoms.
They can be homonuclear (molecule made of two atoms of the same element) and heteronuclear (molecule made of two different atoms).
Chlorine (Cl) is halogen element.
Halogen elements are in group 17: fluorine (F), chlorine (Cl), bromine (Br) and iodine (I). They are very reactive and easily form many compounds.
Answer : Option C) Categoric.
Explanation : According to the question the researcher is studying the science of attractiveness and the test is conducted by the volunteers by showing the images of different people, so here we can judge that the study is gender based and has to include male or female. Hence, it can be called as categoric variable.